--- library_name: transformers license: apache-2.0 base_model: PlanTL-GOB-ES/bsc-bio-ehr-es tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/drugtemist-fasttext-75-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/drugtemist-fasttext-75-ner type: Rodrigo1771/drugtemist-fasttext-75-ner config: DrugTEMIST NER split: validation args: DrugTEMIST NER metrics: - name: Precision type: precision value: 0.9447963800904977 - name: Recall type: recall value: 0.9595588235294118 - name: F1 type: f1 value: 0.9521203830369357 - name: Accuracy type: accuracy value: 0.9991418018042759 --- # output This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/drugtemist-fasttext-75-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0044 - Precision: 0.9448 - Recall: 0.9596 - F1: 0.9521 - Accuracy: 0.9991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 488 | 0.0039 | 0.9005 | 0.9733 | 0.9355 | 0.9988 | | 0.0189 | 2.0 | 976 | 0.0032 | 0.9239 | 0.9596 | 0.9414 | 0.9989 | | 0.0027 | 3.0 | 1464 | 0.0044 | 0.9192 | 0.9623 | 0.9403 | 0.9989 | | 0.0015 | 4.0 | 1952 | 0.0036 | 0.9424 | 0.9467 | 0.9445 | 0.9991 | | 0.0007 | 5.0 | 2440 | 0.0044 | 0.9448 | 0.9596 | 0.9521 | 0.9991 | | 0.0004 | 6.0 | 2928 | 0.0055 | 0.9594 | 0.9338 | 0.9464 | 0.9990 | | 0.0002 | 7.0 | 3416 | 0.0049 | 0.9397 | 0.9458 | 0.9427 | 0.9990 | | 0.0002 | 8.0 | 3904 | 0.0053 | 0.9434 | 0.9504 | 0.9469 | 0.9991 | | 0.0001 | 9.0 | 4392 | 0.0050 | 0.9434 | 0.9494 | 0.9464 | 0.9991 | | 0.0001 | 10.0 | 4880 | 0.0052 | 0.9417 | 0.9494 | 0.9455 | 0.9991 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1