--- library_name: transformers license: apache-2.0 base_model: PlanTL-GOB-ES/bsc-bio-ehr-es tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/drugtemist-85-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/drugtemist-85-ner type: Rodrigo1771/drugtemist-85-ner config: DrugTEMIST NER split: validation args: DrugTEMIST NER metrics: - name: Precision type: precision value: 0.9461187214611873 - name: Recall type: recall value: 0.9522058823529411 - name: F1 type: f1 value: 0.9491525423728814 - name: Accuracy type: accuracy value: 0.9989426998228679 --- # output This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/drugtemist-85-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0048 - Precision: 0.9461 - Recall: 0.9522 - F1: 0.9492 - Accuracy: 0.9989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 466 | 0.0031 | 0.9292 | 0.9412 | 0.9352 | 0.9989 | | 0.0199 | 2.0 | 932 | 0.0031 | 0.9212 | 0.9568 | 0.9387 | 0.9989 | | 0.0026 | 3.0 | 1398 | 0.0040 | 0.9365 | 0.9357 | 0.9361 | 0.9989 | | 0.0011 | 4.0 | 1864 | 0.0052 | 0.9400 | 0.9219 | 0.9309 | 0.9987 | | 0.001 | 5.0 | 2330 | 0.0048 | 0.9461 | 0.9522 | 0.9492 | 0.9989 | | 0.0005 | 6.0 | 2796 | 0.0046 | 0.9376 | 0.9522 | 0.9448 | 0.9989 | | 0.0004 | 7.0 | 3262 | 0.0050 | 0.9328 | 0.9568 | 0.9446 | 0.9990 | | 0.0002 | 8.0 | 3728 | 0.0055 | 0.9423 | 0.9449 | 0.9436 | 0.9989 | | 0.0001 | 9.0 | 4194 | 0.0057 | 0.9399 | 0.9485 | 0.9442 | 0.9989 | | 0.0001 | 10.0 | 4660 | 0.0058 | 0.9348 | 0.9485 | 0.9416 | 0.9989 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1