Rodrigo1771 commited on
Commit
08d4796
·
verified ·
1 Parent(s): 14df036

Training in progress, epoch 1

Browse files
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
5
+ tags:
6
+ - token-classification
7
+ - generated_from_trainer
8
+ datasets:
9
+ - Rodrigo1771/symptemist-fasttext-8-ner
10
+ metrics:
11
+ - precision
12
+ - recall
13
+ - f1
14
+ - accuracy
15
+ model-index:
16
+ - name: output
17
+ results:
18
+ - task:
19
+ name: Token Classification
20
+ type: token-classification
21
+ dataset:
22
+ name: Rodrigo1771/symptemist-fasttext-8-ner
23
+ type: Rodrigo1771/symptemist-fasttext-8-ner
24
+ config: SympTEMIST NER
25
+ split: validation
26
+ args: SympTEMIST NER
27
+ metrics:
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.6764102564102564
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.7219485495347564
34
+ - name: F1
35
+ type: f1
36
+ value: 0.6984379136881121
37
+ - name: Accuracy
38
+ type: accuracy
39
+ value: 0.9500465205813469
40
+ ---
41
+
42
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
43
+ should probably proofread and complete it, then remove this comment. -->
44
+
45
+ # output
46
+
47
+ This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/symptemist-fasttext-8-ner dataset.
48
+ It achieves the following results on the evaluation set:
49
+ - Loss: 0.3073
50
+ - Precision: 0.6764
51
+ - Recall: 0.7219
52
+ - F1: 0.6984
53
+ - Accuracy: 0.9500
54
+
55
+ ## Model description
56
+
57
+ More information needed
58
+
59
+ ## Intended uses & limitations
60
+
61
+ More information needed
62
+
63
+ ## Training and evaluation data
64
+
65
+ More information needed
66
+
67
+ ## Training procedure
68
+
69
+ ### Training hyperparameters
70
+
71
+ The following hyperparameters were used during training:
72
+ - learning_rate: 5e-05
73
+ - train_batch_size: 32
74
+ - eval_batch_size: 8
75
+ - seed: 42
76
+ - gradient_accumulation_steps: 2
77
+ - total_train_batch_size: 64
78
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
79
+ - lr_scheduler_type: linear
80
+ - num_epochs: 10.0
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
85
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
86
+ | No log | 0.9975 | 203 | 0.1501 | 0.5960 | 0.6338 | 0.6143 | 0.9468 |
87
+ | No log | 2.0 | 407 | 0.1761 | 0.6529 | 0.6940 | 0.6729 | 0.9492 |
88
+ | 0.1312 | 2.9975 | 610 | 0.1995 | 0.6322 | 0.7170 | 0.6720 | 0.9470 |
89
+ | 0.1312 | 4.0 | 814 | 0.2182 | 0.6446 | 0.7137 | 0.6774 | 0.9483 |
90
+ | 0.0248 | 4.9975 | 1017 | 0.2461 | 0.6251 | 0.7219 | 0.6701 | 0.9449 |
91
+ | 0.0248 | 6.0 | 1221 | 0.2695 | 0.6410 | 0.7302 | 0.6827 | 0.9469 |
92
+ | 0.0248 | 6.9975 | 1424 | 0.2829 | 0.6529 | 0.7340 | 0.6911 | 0.9470 |
93
+ | 0.0081 | 8.0 | 1628 | 0.2982 | 0.6711 | 0.7181 | 0.6938 | 0.9494 |
94
+ | 0.0081 | 8.9975 | 1831 | 0.3073 | 0.6764 | 0.7219 | 0.6984 | 0.9500 |
95
+ | 0.0038 | 9.9754 | 2030 | 0.3079 | 0.6713 | 0.7165 | 0.6931 | 0.9500 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.44.2
101
+ - Pytorch 2.4.0+cu121
102
+ - Datasets 2.21.0
103
+ - Tokenizers 0.19.1
all_results.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.975429975429975,
3
+ "eval_accuracy": 0.9500465205813469,
4
+ "eval_f1": 0.6984379136881121,
5
+ "eval_loss": 0.30729904770851135,
6
+ "eval_precision": 0.6764102564102564,
7
+ "eval_recall": 0.7219485495347564,
8
+ "eval_runtime": 6.0921,
9
+ "eval_samples": 2519,
10
+ "eval_samples_per_second": 413.484,
11
+ "eval_steps_per_second": 51.706,
12
+ "predict_accuracy": 0.9466933985906772,
13
+ "predict_f1": 0.6951548848292296,
14
+ "predict_loss": 0.3347860872745514,
15
+ "predict_precision": 0.6863237139272271,
16
+ "predict_recall": 0.704216285806244,
17
+ "predict_runtime": 9.749,
18
+ "predict_samples_per_second": 415.118,
19
+ "predict_steps_per_second": 51.903,
20
+ "total_flos": 6404835399317064.0,
21
+ "train_loss": 0.04138289297302368,
22
+ "train_runtime": 1065.756,
23
+ "train_samples": 13013,
24
+ "train_samples_per_second": 122.101,
25
+ "train_steps_per_second": 1.905
26
+ }
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
3
+ "architectures": [
4
+ "RobertaForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "finetuning_task": "ner",
11
+ "gradient_checkpointing": false,
12
+ "hidden_act": "gelu",
13
+ "hidden_dropout_prob": 0.1,
14
+ "hidden_size": 768,
15
+ "id2label": {
16
+ "0": "O",
17
+ "1": "B-SINTOMA",
18
+ "2": "I-SINTOMA"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "B-SINTOMA": 1,
24
+ "I-SINTOMA": 2,
25
+ "O": 0
26
+ },
27
+ "layer_norm_eps": 1e-05,
28
+ "max_position_embeddings": 514,
29
+ "model_type": "roberta",
30
+ "num_attention_heads": 12,
31
+ "num_hidden_layers": 12,
32
+ "pad_token_id": 1,
33
+ "position_embedding_type": "absolute",
34
+ "torch_dtype": "float32",
35
+ "transformers_version": "4.44.2",
36
+ "type_vocab_size": 1,
37
+ "use_cache": true,
38
+ "vocab_size": 50262
39
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.975429975429975,
3
+ "eval_accuracy": 0.9500465205813469,
4
+ "eval_f1": 0.6984379136881121,
5
+ "eval_loss": 0.30729904770851135,
6
+ "eval_precision": 0.6764102564102564,
7
+ "eval_recall": 0.7219485495347564,
8
+ "eval_runtime": 6.0921,
9
+ "eval_samples": 2519,
10
+ "eval_samples_per_second": 413.484,
11
+ "eval_steps_per_second": 51.706
12
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd56006954dc777a98f3c5e0587cc614d34216bcb27350118db301e7a844faa9
3
+ size 496244100
predict_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_accuracy": 0.9466933985906772,
3
+ "predict_f1": 0.6951548848292296,
4
+ "predict_loss": 0.3347860872745514,
5
+ "predict_precision": 0.6863237139272271,
6
+ "predict_recall": 0.704216285806244,
7
+ "predict_runtime": 9.749,
8
+ "predict_samples_per_second": 415.118,
9
+ "predict_steps_per_second": 51.903
10
+ }
predictions.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tb/events.out.tfevents.1725881335.0a1c9bec2a53.3232.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:593e737686a00ae0f64a94f2ef02389ad7dff30c0ba6a6f2b1c65ac31e873867
3
+ size 11302
tb/events.out.tfevents.1725882696.0a1c9bec2a53.3232.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05ecdc6d00855fb66deb25a7b5be160aa0ebb2ebe07a43beb7d88fb0430fb141
3
+ size 560
tb/events.out.tfevents.1725882852.0a1c9bec2a53.9893.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:543df15001da008ba822f9c1ebf4f77259f803cbf1c5758f2da70bdbf003d86f
3
+ size 11091
tb/events.out.tfevents.1725883955.0a1c9bec2a53.9893.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b842d84c89f0d88706e31e98b113fae6b45879220115930147db648f848a8c24
3
+ size 560
tb/events.out.tfevents.1725884095.0a1c9bec2a53.15221.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9529d9c4be592245c933a5892ef8b71c8be99c2c71381d022d5f07c90bd6362
3
+ size 5645
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50261": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "max_len": 512,
52
+ "model_max_length": 512,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "tokenizer_class": "RobertaTokenizer",
56
+ "trim_offsets": true,
57
+ "unk_token": "<unk>"
58
+ }
train.log ADDED
@@ -0,0 +1,357 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
  0%| | 0/1710 [00:00<?, ?it/s]
1
  0%| | 1/1710 [00:01<32:09, 1.13s/it]
2
  0%| | 2/1710 [00:01<19:10, 1.48it/s]
3
  0%| | 3/1710 [00:01<16:10, 1.76it/s]
4
  0%| | 4/1710 [00:02<14:04, 2.02it/s]
5
  0%| | 5/1710 [00:02<13:32, 2.10it/s]
6
  0%| | 6/1710 [00:03<14:07, 2.01it/s]
7
  0%| | 7/1710 [00:03<12:53, 2.20it/s]
8
  0%| | 8/1710 [00:04<12:12, 2.32it/s]
9
  1%| | 9/1710 [00:04<12:30, 2.27it/s]
10
  1%| | 10/1710 [00:04<11:41, 2.42it/s]
11
  1%| | 11/1710 [00:05<12:06, 2.34it/s]
12
  1%| | 12/1710 [00:05<13:56, 2.03it/s]
13
  1%| | 13/1710 [00:06<14:13, 1.99it/s]
14
  1%| | 14/1710 [00:06<14:10, 2.00it/s]
15
  1%| | 15/1710 [00:07<14:07, 2.00it/s]
16
  1%| | 16/1710 [00:08<15:00, 1.88it/s]
17
  1%| | 17/1710 [00:08<13:46, 2.05it/s]
18
  1%| | 18/1710 [00:08<13:39, 2.06it/s]
19
  1%| | 19/1710 [00:09<12:48, 2.20it/s]
20
  1%| | 20/1710 [00:09<12:31, 2.25it/s]
21
  1%| | 21/1710 [00:10<12:28, 2.26it/s]
22
  1%|▏ | 22/1710 [00:10<14:21, 1.96it/s]
23
  1%|▏ | 23/1710 [00:11<14:32, 1.93it/s]
24
  1%|▏ | 24/1710 [00:11<13:26, 2.09it/s]
25
  1%|▏ | 25/1710 [00:12<14:27, 1.94it/s]
26
  2%|▏ | 26/1710 [00:12<13:07, 2.14it/s]
27
  2%|▏ | 27/1710 [00:13<14:22, 1.95it/s]
28
  2%|▏ | 28/1710 [00:13<13:51, 2.02it/s]
29
  2%|▏ | 29/1710 [00:14<14:49, 1.89it/s]
30
  2%|▏ | 30/1710 [00:14<13:40, 2.05it/s]
31
  2%|▏ | 31/1710 [00:15<13:01, 2.15it/s]
32
  2%|▏ | 32/1710 [00:15<14:15, 1.96it/s]
33
  2%|▏ | 33/1710 [00:16<18:22, 1.52it/s]
34
  2%|▏ | 34/1710 [00:17<18:55, 1.48it/s]
35
  2%|▏ | 35/1710 [00:17<16:24, 1.70it/s]
36
  2%|▏ | 36/1710 [00:18<14:21, 1.94it/s]
37
  2%|▏ | 37/1710 [00:19<17:15, 1.62it/s]
38
  2%|▏ | 38/1710 [00:19<15:50, 1.76it/s]
39
  2%|▏ | 39/1710 [00:19<14:13, 1.96it/s]
40
  2%|▏ | 40/1710 [00:20<14:20, 1.94it/s]
41
  2%|▏ | 41/1710 [00:20<13:25, 2.07it/s]
42
  2%|▏ | 42/1710 [00:21<14:16, 1.95it/s]
43
  3%|▎ | 43/1710 [00:21<14:07, 1.97it/s]
44
  3%|▎ | 44/1710 [00:22<13:33, 2.05it/s]
45
  3%|▎ | 45/1710 [00:22<12:56, 2.14it/s]
46
  3%|▎ | 46/1710 [00:23<12:49, 2.16it/s]
47
  3%|▎ | 47/1710 [00:23<12:51, 2.16it/s]
48
  3%|▎ | 48/1710 [00:24<12:06, 2.29it/s]
49
  3%|▎ | 49/1710 [00:24<15:02, 1.84it/s]
50
  3%|▎ | 50/1710 [00:25<14:06, 1.96it/s]
51
  3%|▎ | 51/1710 [00:25<13:11, 2.10it/s]
52
  3%|▎ | 52/1710 [00:26<12:45, 2.17it/s]
53
  3%|▎ | 53/1710 [00:26<12:22, 2.23it/s]
54
  3%|▎ | 54/1710 [00:27<12:33, 2.20it/s]
55
  3%|▎ | 55/1710 [00:27<15:05, 1.83it/s]
56
  3%|▎ | 56/1710 [00:28<13:50, 1.99it/s]
57
  3%|▎ | 57/1710 [00:28<13:48, 2.00it/s]
58
  3%|▎ | 58/1710 [00:29<12:17, 2.24it/s]
59
  3%|▎ | 59/1710 [00:29<11:30, 2.39it/s]
60
  4%|▎ | 60/1710 [00:29<11:26, 2.40it/s]
61
  4%|▎ | 61/1710 [00:30<12:02, 2.28it/s]
62
  4%|▎ | 62/1710 [00:31<14:35, 1.88it/s]
63
  4%|▎ | 63/1710 [00:31<13:25, 2.05it/s]
64
  4%|▎ | 64/1710 [00:31<12:02, 2.28it/s]
65
  4%|▍ | 65/1710 [00:32<12:17, 2.23it/s]
66
  4%|▍ | 66/1710 [00:32<11:20, 2.42it/s]
67
  4%|▍ | 67/1710 [00:33<12:26, 2.20it/s]
68
  4%|▍ | 68/1710 [00:33<12:17, 2.23it/s]
69
  4%|▍ | 69/1710 [00:33<12:09, 2.25it/s]
70
  4%|▍ | 70/1710 [00:34<12:14, 2.23it/s]
71
  4%|▍ | 71/1710 [00:34<11:59, 2.28it/s]
72
  4%|▍ | 72/1710 [00:35<12:12, 2.24it/s]
73
  4%|▍ | 73/1710 [00:35<11:23, 2.40it/s]
74
  4%|▍ | 74/1710 [00:36<11:55, 2.29it/s]
75
  4%|▍ | 75/1710 [00:36<11:33, 2.36it/s]
76
  4%|▍ | 76/1710 [00:37<13:03, 2.09it/s]
77
  5%|▍ | 77/1710 [00:37<13:12, 2.06it/s]
78
  5%|▍ | 78/1710 [00:38<14:10, 1.92it/s]
79
  5%|▍ | 79/1710 [00:38<14:31, 1.87it/s]
80
  5%|▍ | 80/1710 [00:39<13:57, 1.95it/s]
81
  5%|▍ | 81/1710 [00:39<13:52, 1.96it/s]
82
  5%|▍ | 82/1710 [00:40<12:48, 2.12it/s]
83
  5%|▍ | 83/1710 [00:40<14:18, 1.90it/s]
84
  5%|▍ | 84/1710 [00:41<13:36, 1.99it/s]
85
  5%|▍ | 85/1710 [00:41<12:53, 2.10it/s]
86
  5%|▌ | 86/1710 [00:42<12:27, 2.17it/s]
87
  5%|▌ | 87/1710 [00:42<12:30, 2.16it/s]
88
  5%|▌ | 88/1710 [00:43<12:09, 2.22it/s]
89
  5%|▌ | 89/1710 [00:43<12:54, 2.09it/s]
90
  5%|▌ | 90/1710 [00:43<12:16, 2.20it/s]
91
  5%|▌ | 91/1710 [00:44<12:47, 2.11it/s]
92
  5%|▌ | 92/1710 [00:44<12:29, 2.16it/s]
93
  5%|▌ | 93/1710 [00:45<12:22, 2.18it/s]
94
  5%|▌ | 94/1710 [00:45<12:03, 2.23it/s]
95
  6%|▌ | 95/1710 [00:46<12:00, 2.24it/s]
96
  6%|▌ | 96/1710 [00:46<13:09, 2.05it/s]
97
  6%|▌ | 97/1710 [00:47<12:05, 2.22it/s]
98
  6%|▌ | 98/1710 [00:47<11:19, 2.37it/s]
99
  6%|▌ | 99/1710 [00:47<10:59, 2.44it/s]
100
  6%|▌ | 100/1710 [00:48<11:51, 2.26it/s]
101
  6%|▌ | 101/1710 [00:48<11:43, 2.29it/s]
102
  6%|▌ | 102/1710 [00:49<11:46, 2.28it/s]
103
  6%|▌ | 103/1710 [00:49<11:30, 2.33it/s]
104
  6%|▌ | 104/1710 [00:50<12:02, 2.22it/s]
105
  6%|▌ | 105/1710 [00:50<11:09, 2.40it/s]
106
  6%|▌ | 106/1710 [00:50<11:00, 2.43it/s]
107
  6%|▋ | 107/1710 [00:51<11:12, 2.38it/s]
108
  6%|▋ | 108/1710 [00:51<10:58, 2.43it/s]
109
  6%|▋ | 109/1710 [00:52<10:58, 2.43it/s]
110
  6%|▋ | 110/1710 [00:52<11:53, 2.24it/s]
111
  6%|▋ | 111/1710 [00:53<11:47, 2.26it/s]
112
  7%|▋ | 112/1710 [00:53<11:39, 2.29it/s]
113
  7%|▋ | 113/1710 [00:53<11:16, 2.36it/s]
114
  7%|▋ | 114/1710 [00:54<11:12, 2.37it/s]
115
  7%|▋ | 115/1710 [00:54<10:35, 2.51it/s]
116
  7%|▋ | 116/1710 [00:55<11:13, 2.37it/s]
117
  7%|▋ | 117/1710 [00:55<11:17, 2.35it/s]
118
  7%|▋ | 118/1710 [00:56<14:58, 1.77it/s]
119
  7%|▋ | 119/1710 [00:56<14:07, 1.88it/s]
120
  7%|▋ | 120/1710 [00:57<13:45, 1.93it/s]
121
  7%|▋ | 121/1710 [00:57<12:26, 2.13it/s]
122
  7%|▋ | 122/1710 [00:58<11:56, 2.22it/s]
123
  7%|▋ | 123/1710 [00:58<11:05, 2.39it/s]
124
  7%|▋ | 124/1710 [00:58<10:58, 2.41it/s]
125
  7%|▋ | 125/1710 [00:59<10:03, 2.63it/s]
126
  7%|▋ | 126/1710 [00:59<10:30, 2.51it/s]
127
  7%|▋ | 127/1710 [01:00<10:41, 2.47it/s]
128
  7%|▋ | 128/1710 [01:00<10:48, 2.44it/s]
129
  8%|▊ | 129/1710 [01:00<10:51, 2.42it/s]
130
  8%|▊ | 130/1710 [01:01<11:48, 2.23it/s]
131
  8%|▊ | 131/1710 [01:01<11:11, 2.35it/s]
132
  8%|▊ | 132/1710 [01:02<11:31, 2.28it/s]
133
  8%|▊ | 133/1710 [01:02<11:40, 2.25it/s]
134
  8%|▊ | 134/1710 [01:03<10:50, 2.42it/s]
135
  8%|▊ | 135/1710 [01:03<10:17, 2.55it/s]
136
  8%|▊ | 136/1710 [01:03<10:39, 2.46it/s]
137
  8%|▊ | 137/1710 [01:04<11:22, 2.30it/s]
138
  8%|▊ | 138/1710 [01:04<11:21, 2.31it/s]
139
  8%|▊ | 139/1710 [01:05<11:55, 2.20it/s]
140
  8%|▊ | 140/1710 [01:06<14:01, 1.87it/s]
141
  8%|▊ | 141/1710 [01:06<12:55, 2.02it/s]
142
  8%|▊ | 142/1710 [01:07<13:39, 1.91it/s]
143
  8%|▊ | 143/1710 [01:07<12:42, 2.06it/s]
144
  8%|▊ | 144/1710 [01:07<11:24, 2.29it/s]
145
  8%|▊ | 145/1710 [01:08<11:51, 2.20it/s]
146
  9%|▊ | 146/1710 [01:08<12:38, 2.06it/s]
147
  9%|▊ | 147/1710 [01:09<12:53, 2.02it/s]
148
  9%|▊ | 148/1710 [01:09<11:37, 2.24it/s]
149
  9%|▊ | 149/1710 [01:10<13:00, 2.00it/s]
150
  9%|▉ | 150/1710 [01:10<13:03, 1.99it/s]
151
  9%|▉ | 151/1710 [01:11<12:32, 2.07it/s]
152
  9%|▉ | 152/1710 [01:11<12:23, 2.10it/s]
153
  9%|▉ | 153/1710 [01:12<11:41, 2.22it/s]
154
  9%|▉ | 154/1710 [01:12<11:02, 2.35it/s]
155
  9%|▉ | 155/1710 [01:12<10:28, 2.48it/s]
156
  9%|▉ | 156/1710 [01:13<11:00, 2.35it/s]
157
  9%|▉ | 157/1710 [01:13<10:35, 2.44it/s]
158
  9%|▉ | 158/1710 [01:14<10:03, 2.57it/s]
159
  9%|▉ | 159/1710 [01:14<10:55, 2.37it/s]
160
  9%|▉ | 160/1710 [01:14<11:03, 2.34it/s]
161
  9%|▉ | 161/1710 [01:15<10:27, 2.47it/s]
162
  9%|▉ | 162/1710 [01:15<10:53, 2.37it/s]
163
  10%|▉ | 163/1710 [01:16<11:08, 2.31it/s]
164
  10%|▉ | 164/1710 [01:16<10:45, 2.39it/s]
165
  10%|▉ | 165/1710 [01:17<11:08, 2.31it/s]
166
  10%|▉ | 166/1710 [01:17<12:47, 2.01it/s]
167
  10%|▉ | 167/1710 [01:18<11:48, 2.18it/s]
168
  10%|▉ | 168/1710 [01:18<11:28, 2.24it/s]
169
  10%|▉ | 169/1710 [01:19<12:21, 2.08it/s]
170
  10%|▉ | 170/1710 [01:19<11:20, 2.26it/s]
171
  10%|█ | 171/1710 [01:19<11:08, 2.30it/s][INFO|trainer.py:811] 2024-09-09 12:16:15,508 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
 
 
 
 
 
 
172
  0%| | 0/315 [00:00<?, ?it/s]
 
173
  3%|▎ | 8/315 [00:00<00:04, 74.15it/s]
 
174
  5%|▌ | 16/315 [00:00<00:04, 72.87it/s]
 
175
  8%|▊ | 24/315 [00:00<00:03, 74.59it/s]
 
176
  10%|█ | 32/315 [00:00<00:04, 70.63it/s]
 
177
  13%|█▎ | 40/315 [00:00<00:03, 71.80it/s]
 
178
  15%|█▌ | 48/315 [00:00<00:03, 72.49it/s]
 
179
  18%|█▊ | 56/315 [00:00<00:03, 72.18it/s]
 
180
  20%|██ | 64/315 [00:00<00:03, 70.11it/s]
 
181
  23%|██▎ | 72/315 [00:00<00:03, 72.26it/s]
 
182
  25%|██▌ | 80/315 [00:01<00:03, 68.95it/s]
 
183
  28%|██▊ | 87/315 [00:01<00:03, 67.94it/s]
 
184
  30%|███ | 95/315 [00:01<00:03, 69.32it/s]
 
185
  32%|███▏ | 102/315 [00:01<00:03, 65.97it/s]
 
186
  35%|███▍ | 110/315 [00:01<00:02, 68.77it/s]
 
187
  37%|███▋ | 118/315 [00:01<00:02, 70.24it/s]
 
188
  40%|████ | 126/315 [00:01<00:02, 67.00it/s]
 
189
  43%|████▎ | 134/315 [00:01<00:02, 67.51it/s]
 
190
  45%|████▍ | 141/315 [00:02<00:02, 68.03it/s]
 
191
  47%|████▋ | 149/315 [00:02<00:02, 70.61it/s]
 
192
  50%|████▉ | 157/315 [00:02<00:02, 72.86it/s]
 
193
  52%|█████▏ | 165/315 [00:02<00:02, 71.30it/s]
 
194
  55%|█████▍ | 173/315 [00:02<00:02, 70.07it/s]
 
195
  57%|█████▋ | 181/315 [00:02<00:01, 67.81it/s]
 
196
  60%|██████ | 189/315 [00:02<00:01, 68.05it/s]
 
197
  62%|██████▏ | 196/315 [00:02<00:01, 67.00it/s]
 
198
  64%|██████▍ | 203/315 [00:02<00:01, 64.45it/s]
 
199
  67%|██████▋ | 210/315 [00:03<00:01, 65.01it/s]
 
200
  69%|██████▉ | 218/315 [00:03<00:01, 68.74it/s]
 
201
  72%|███████▏ | 226/315 [00:03<00:01, 71.36it/s]
 
202
  75%|███████▍ | 235/315 [00:03<00:01, 74.60it/s]
 
203
  77%|███████▋ | 243/315 [00:03<00:01, 70.81it/s]
 
204
  80%|███████▉ | 251/315 [00:03<00:00, 70.96it/s]
 
205
  82%|████████▏ | 259/315 [00:03<00:00, 68.92it/s]
 
206
  85%|████████▍ | 267/315 [00:03<00:00, 70.16it/s]
 
207
  88%|████████▊ | 276/315 [00:03<00:00, 73.45it/s]
 
208
  90%|█████████ | 284/315 [00:04<00:00, 73.52it/s]
 
209
  93%|█████████▎| 292/315 [00:04<00:00, 71.60it/s]
 
210
  95%|█████████▌| 300/315 [00:04<00:00, 71.31it/s]
 
211
  98%|█████████▊| 308/315 [00:04<00:00, 71.30it/s]
212
 
 
213
 
214
  10%|█ | 171/1710 [01:25<11:08, 2.30it/s]
 
 
215
  [INFO|trainer.py:3503] 2024-09-09 12:16:21,499 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-171
 
 
 
 
 
 
 
216
  10%|█ | 172/1710 [01:30<1:27:43, 3.42s/it]
217
  10%|█ | 173/1710 [01:30<1:05:49, 2.57s/it]
218
  10%|█ | 174/1710 [01:31<49:01, 1.92s/it]
219
  10%|█ | 175/1710 [01:31<37:24, 1.46s/it]
220
  10%|█ | 176/1710 [01:32<29:43, 1.16s/it]
221
  10%|█ | 177/1710 [01:32<23:13, 1.10it/s]
222
  10%|█ | 178/1710 [01:32<19:22, 1.32it/s]
223
  10%|█ | 179/1710 [01:33<16:39, 1.53it/s]
224
  11%|█ | 180/1710 [01:33<14:52, 1.71it/s]
225
  11%|█ | 181/1710 [01:34<13:53, 1.84it/s]
226
  11%|█ | 182/1710 [01:34<13:02, 1.95it/s]
227
  11%|█ | 183/1710 [01:34<12:03, 2.11it/s]
228
  11%|█ | 184/1710 [01:35<11:05, 2.29it/s]
229
  11%|█ | 185/1710 [01:35<11:05, 2.29it/s]
230
  11%|█ | 186/1710 [01:36<10:52, 2.33it/s]
231
  11%|█ | 187/1710 [01:36<10:16, 2.47it/s]
232
  11%|█ | 188/1710 [01:37<11:20, 2.24it/s]
233
  11%|█ | 189/1710 [01:37<10:06, 2.51it/s]
234
  11%|█ | 190/1710 [01:37<10:00, 2.53it/s]
235
  11%|█ | 191/1710 [01:38<10:40, 2.37it/s]
236
  11%|█ | 192/1710 [01:38<13:43, 1.84it/s]
237
  11%|█▏ | 193/1710 [01:39<13:01, 1.94it/s]
238
  11%|█▏ | 194/1710 [01:40<14:45, 1.71it/s]
239
  11%|█▏ | 195/1710 [01:40<13:18, 1.90it/s]
240
  11%|█▏ | 196/1710 [01:41<12:48, 1.97it/s]
241
  12%|█▏ | 197/1710 [01:41<11:50, 2.13it/s]
242
  12%|█▏ | 198/1710 [01:41<12:19, 2.05it/s]
243
  12%|█▏ | 199/1710 [01:42<11:26, 2.20it/s]
244
  12%|█▏ | 200/1710 [01:42<11:07, 2.26it/s]
245
  12%|█▏ | 201/1710 [01:43<11:23, 2.21it/s]
246
  12%|█▏ | 202/1710 [01:43<11:44, 2.14it/s]
247
  12%|█▏ | 203/1710 [01:44<11:12, 2.24it/s]
248
  12%|█▏ | 204/1710 [01:44<11:04, 2.27it/s]
249
  12%|█▏ | 205/1710 [01:44<10:26, 2.40it/s]
250
  12%|█▏ | 206/1710 [01:45<10:31, 2.38it/s]
251
  12%|█▏ | 207/1710 [01:45<10:37, 2.36it/s]
252
  12%|█▏ | 208/1710 [01:46<10:40, 2.35it/s]
253
  12%|█▏ | 209/1710 [01:46<10:26, 2.40it/s]
254
  12%|█▏ | 210/1710 [01:47<10:21, 2.41it/s]
255
  12%|█▏ | 211/1710 [01:47<13:31, 1.85it/s]
256
  12%|█▏ | 212/1710 [01:48<12:25, 2.01it/s]
257
  12%|█▏ | 213/1710 [01:48<11:29, 2.17it/s]
258
  13%|█▎ | 214/1710 [01:48<10:48, 2.31it/s]
259
  13%|█▎ | 215/1710 [01:49<11:08, 2.24it/s]
260
  13%|█▎ | 216/1710 [01:49<11:34, 2.15it/s]
261
  13%|█▎ | 217/1710 [01:50<10:57, 2.27it/s]
262
  13%|█▎ | 218/1710 [01:50<11:25, 2.18it/s]
263
  13%|█▎ | 219/1710 [01:51<10:37, 2.34it/s]
264
  13%|█▎ | 220/1710 [01:51<10:59, 2.26it/s]
265
  13%|█▎ | 221/1710 [01:52<11:41, 2.12it/s]
266
  13%|█▎ | 222/1710 [01:52<11:35, 2.14it/s]
267
  13%|█▎ | 223/1710 [01:53<10:35, 2.34it/s]
268
  13%|█▎ | 224/1710 [01:53<10:22, 2.39it/s]
269
  13%|█▎ | 225/1710 [01:53<11:22, 2.18it/s]
270
  13%|█▎ | 226/1710 [01:54<10:48, 2.29it/s]
271
  13%|█▎ | 227/1710 [01:55<15:06, 1.64it/s]
272
  13%|█▎ | 228/1710 [01:55<15:03, 1.64it/s]
273
  13%|█▎ | 229/1710 [01:56<13:49, 1.79it/s]
274
  13%|█▎ | 230/1710 [01:56<13:40, 1.80it/s]
275
  14%|█▎ | 231/1710 [01:57<12:47, 1.93it/s]
276
  14%|█▎ | 232/1710 [01:57<11:18, 2.18it/s]
277
  14%|█▎ | 233/1710 [01:58<11:45, 2.09it/s]
278
  14%|█▎ | 234/1710 [01:58<11:04, 2.22it/s]
279
  14%|█▎ | 235/1710 [01:58<10:23, 2.37it/s]
280
  14%|█▍ | 236/1710 [01:59<10:08, 2.42it/s]
281
  14%|█▍ | 237/1710 [01:59<11:05, 2.21it/s]
282
  14%|█▍ | 238/1710 [02:00<13:19, 1.84it/s]
283
  14%|█▍ | 239/1710 [02:01<12:42, 1.93it/s]
284
  14%|█▍ | 240/1710 [02:01<11:38, 2.10it/s]
285
  14%|█▍ | 241/1710 [02:01<10:37, 2.30it/s]
286
  14%|█▍ | 242/1710 [02:02<10:17, 2.38it/s]
287
  14%|█▍ | 243/1710 [02:02<10:50, 2.25it/s]
288
  14%|█▍ | 244/1710 [02:03<10:29, 2.33it/s]
289
  14%|█▍ | 245/1710 [02:03<10:30, 2.32it/s]
290
  14%|█▍ | 246/1710 [02:04<11:29, 2.12it/s]
291
  14%|█▍ | 247/1710 [02:04<11:58, 2.04it/s]
292
  15%|█▍ | 248/1710 [02:05<11:34, 2.10it/s]
293
  15%|█▍ | 249/1710 [02:05<10:23, 2.34it/s]
294
  15%|█▍ | 250/1710 [02:05<10:26, 2.33it/s]
295
  15%|█▍ | 251/1710 [02:06<10:35, 2.30it/s]
296
  15%|█▍ | 252/1710 [02:06<10:23, 2.34it/s]
297
  15%|█▍ | 253/1710 [02:07<10:17, 2.36it/s]
298
  15%|█▍ | 254/1710 [02:07<12:00, 2.02it/s]
299
  15%|█▍ | 255/1710 [02:08<11:09, 2.17it/s]
300
  15%|█▍ | 256/1710 [02:08<11:16, 2.15it/s]
301
  15%|█▌ | 257/1710 [02:09<11:21, 2.13it/s]
302
  15%|█▌ | 258/1710 [02:09<10:36, 2.28it/s]
303
  15%|█▌ | 259/1710 [02:09<10:12, 2.37it/s]
304
  15%|█▌ | 260/1710 [02:10<10:50, 2.23it/s]
305
  15%|█▌ | 261/1710 [02:10<11:02, 2.19it/s]
306
  15%|█▌ | 262/1710 [02:11<11:02, 2.18it/s]
307
  15%|█▌ | 263/1710 [02:11<10:14, 2.35it/s]
308
  15%|█▌ | 264/1710 [02:12<11:19, 2.13it/s]
309
  15%|█▌ | 265/1710 [02:12<13:03, 1.84it/s]
310
  16%|█▌ | 266/1710 [02:13<11:58, 2.01it/s]
311
  16%|█▌ | 267/1710 [02:13<11:15, 2.14it/s]
312
  16%|█▌ | 268/1710 [02:14<11:35, 2.07it/s]
313
  16%|█▌ | 269/1710 [02:14<11:31, 2.08it/s]
314
  16%|█▌ | 270/1710 [02:15<11:24, 2.11it/s]
315
  16%|█▌ | 271/1710 [02:15<11:16, 2.13it/s]
316
  16%|█▌ | 272/1710 [02:16<11:15, 2.13it/s]
317
  16%|█▌ | 273/1710 [02:16<11:04, 2.16it/s]
318
  16%|█▌ | 274/1710 [02:17<12:48, 1.87it/s]
319
  16%|█▌ | 275/1710 [02:17<11:30, 2.08it/s]
320
  16%|█▌ | 276/1710 [02:17<10:30, 2.28it/s]
321
  16%|█▌ | 277/1710 [02:18<10:22, 2.30it/s]
 
1
+ 2024-09-09 12:14:35.494661: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2
+ 2024-09-09 12:14:35.513016: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
3
+ 2024-09-09 12:14:35.535014: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
4
+ 2024-09-09 12:14:35.541769: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
5
+ 2024-09-09 12:14:35.557993: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
6
+ To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
7
+ 2024-09-09 12:14:36.793402: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
8
+ /usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1525: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead
9
+ warnings.warn(
10
+ 09/09/2024 12:14:38 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
11
+ 09/09/2024 12:14:38 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
12
+ _n_gpu=1,
13
+ accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},
14
+ adafactor=False,
15
+ adam_beta1=0.9,
16
+ adam_beta2=0.999,
17
+ adam_epsilon=1e-08,
18
+ auto_find_batch_size=False,
19
+ batch_eval_metrics=False,
20
+ bf16=False,
21
+ bf16_full_eval=False,
22
+ data_seed=None,
23
+ dataloader_drop_last=False,
24
+ dataloader_num_workers=0,
25
+ dataloader_persistent_workers=False,
26
+ dataloader_pin_memory=True,
27
+ dataloader_prefetch_factor=None,
28
+ ddp_backend=None,
29
+ ddp_broadcast_buffers=None,
30
+ ddp_bucket_cap_mb=None,
31
+ ddp_find_unused_parameters=None,
32
+ ddp_timeout=1800,
33
+ debug=[],
34
+ deepspeed=None,
35
+ disable_tqdm=False,
36
+ dispatch_batches=None,
37
+ do_eval=True,
38
+ do_predict=True,
39
+ do_train=True,
40
+ eval_accumulation_steps=None,
41
+ eval_delay=0,
42
+ eval_do_concat_batches=True,
43
+ eval_on_start=False,
44
+ eval_steps=None,
45
+ eval_strategy=epoch,
46
+ eval_use_gather_object=False,
47
+ evaluation_strategy=epoch,
48
+ fp16=False,
49
+ fp16_backend=auto,
50
+ fp16_full_eval=False,
51
+ fp16_opt_level=O1,
52
+ fsdp=[],
53
+ fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
54
+ fsdp_min_num_params=0,
55
+ fsdp_transformer_layer_cls_to_wrap=None,
56
+ full_determinism=False,
57
+ gradient_accumulation_steps=2,
58
+ gradient_checkpointing=False,
59
+ gradient_checkpointing_kwargs=None,
60
+ greater_is_better=True,
61
+ group_by_length=False,
62
+ half_precision_backend=auto,
63
+ hub_always_push=False,
64
+ hub_model_id=None,
65
+ hub_private_repo=False,
66
+ hub_strategy=every_save,
67
+ hub_token=<HUB_TOKEN>,
68
+ ignore_data_skip=False,
69
+ include_inputs_for_metrics=False,
70
+ include_num_input_tokens_seen=False,
71
+ include_tokens_per_second=False,
72
+ jit_mode_eval=False,
73
+ label_names=None,
74
+ label_smoothing_factor=0.0,
75
+ learning_rate=5e-05,
76
+ length_column_name=length,
77
+ load_best_model_at_end=True,
78
+ local_rank=0,
79
+ log_level=passive,
80
+ log_level_replica=warning,
81
+ log_on_each_node=True,
82
+ logging_dir=/content/dissertation/scripts/ner/output/tb,
83
+ logging_first_step=False,
84
+ logging_nan_inf_filter=True,
85
+ logging_steps=500,
86
+ logging_strategy=steps,
87
+ lr_scheduler_kwargs={},
88
+ lr_scheduler_type=linear,
89
+ max_grad_norm=1.0,
90
+ max_steps=-1,
91
+ metric_for_best_model=f1,
92
+ mp_parameters=,
93
+ neftune_noise_alpha=None,
94
+ no_cuda=False,
95
+ num_train_epochs=10.0,
96
+ optim=adamw_torch,
97
+ optim_args=None,
98
+ optim_target_modules=None,
99
+ output_dir=/content/dissertation/scripts/ner/output,
100
+ overwrite_output_dir=True,
101
+ past_index=-1,
102
+ per_device_eval_batch_size=8,
103
+ per_device_train_batch_size=32,
104
+ prediction_loss_only=False,
105
+ push_to_hub=True,
106
+ push_to_hub_model_id=None,
107
+ push_to_hub_organization=None,
108
+ push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
109
+ ray_scope=last,
110
+ remove_unused_columns=True,
111
+ report_to=['tensorboard'],
112
+ restore_callback_states_from_checkpoint=False,
113
+ resume_from_checkpoint=None,
114
+ run_name=/content/dissertation/scripts/ner/output,
115
+ save_on_each_node=False,
116
+ save_only_model=False,
117
+ save_safetensors=True,
118
+ save_steps=500,
119
+ save_strategy=epoch,
120
+ save_total_limit=None,
121
+ seed=42,
122
+ skip_memory_metrics=True,
123
+ split_batches=None,
124
+ tf32=None,
125
+ torch_compile=False,
126
+ torch_compile_backend=None,
127
+ torch_compile_mode=None,
128
+ torch_empty_cache_steps=None,
129
+ torchdynamo=None,
130
+ tpu_metrics_debug=False,
131
+ tpu_num_cores=None,
132
+ use_cpu=False,
133
+ use_ipex=False,
134
+ use_legacy_prediction_loop=False,
135
+ use_mps_device=False,
136
+ warmup_ratio=0.0,
137
+ warmup_steps=0,
138
+ weight_decay=0.0,
139
+ )
140
+
141
+
142
+
143
+
144
+
145
+
146
+
147
+ [INFO|configuration_utils.py:733] 2024-09-09 12:14:50,533 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
148
+ [INFO|configuration_utils.py:800] 2024-09-09 12:14:50,537 >> Model config RobertaConfig {
149
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
150
+ "architectures": [
151
+ "RobertaForMaskedLM"
152
+ ],
153
+ "attention_probs_dropout_prob": 0.1,
154
+ "bos_token_id": 0,
155
+ "classifier_dropout": null,
156
+ "eos_token_id": 2,
157
+ "finetuning_task": "ner",
158
+ "gradient_checkpointing": false,
159
+ "hidden_act": "gelu",
160
+ "hidden_dropout_prob": 0.1,
161
+ "hidden_size": 768,
162
+ "id2label": {
163
+ "0": "O",
164
+ "1": "B-SINTOMA",
165
+ "2": "I-SINTOMA"
166
+ },
167
+ "initializer_range": 0.02,
168
+ "intermediate_size": 3072,
169
+ "label2id": {
170
+ "B-SINTOMA": 1,
171
+ "I-SINTOMA": 2,
172
+ "O": 0
173
+ },
174
+ "layer_norm_eps": 1e-05,
175
+ "max_position_embeddings": 514,
176
+ "model_type": "roberta",
177
+ "num_attention_heads": 12,
178
+ "num_hidden_layers": 12,
179
+ "pad_token_id": 1,
180
+ "position_embedding_type": "absolute",
181
+ "transformers_version": "4.44.2",
182
+ "type_vocab_size": 1,
183
+ "use_cache": true,
184
+ "vocab_size": 50262
185
+ }
186
+
187
+ [INFO|configuration_utils.py:733] 2024-09-09 12:14:50,787 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
188
+ [INFO|configuration_utils.py:800] 2024-09-09 12:14:50,788 >> Model config RobertaConfig {
189
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
190
+ "architectures": [
191
+ "RobertaForMaskedLM"
192
+ ],
193
+ "attention_probs_dropout_prob": 0.1,
194
+ "bos_token_id": 0,
195
+ "classifier_dropout": null,
196
+ "eos_token_id": 2,
197
+ "gradient_checkpointing": false,
198
+ "hidden_act": "gelu",
199
+ "hidden_dropout_prob": 0.1,
200
+ "hidden_size": 768,
201
+ "initializer_range": 0.02,
202
+ "intermediate_size": 3072,
203
+ "layer_norm_eps": 1e-05,
204
+ "max_position_embeddings": 514,
205
+ "model_type": "roberta",
206
+ "num_attention_heads": 12,
207
+ "num_hidden_layers": 12,
208
+ "pad_token_id": 1,
209
+ "position_embedding_type": "absolute",
210
+ "transformers_version": "4.44.2",
211
+ "type_vocab_size": 1,
212
+ "use_cache": true,
213
+ "vocab_size": 50262
214
+ }
215
+
216
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,800 >> loading file vocab.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/vocab.json
217
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,801 >> loading file merges.txt from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/merges.txt
218
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,801 >> loading file tokenizer.json from cache at None
219
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,801 >> loading file added_tokens.json from cache at None
220
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,801 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/special_tokens_map.json
221
+ [INFO|tokenization_utils_base.py:2269] 2024-09-09 12:14:50,801 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/tokenizer_config.json
222
+ [INFO|configuration_utils.py:733] 2024-09-09 12:14:50,801 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
223
+ [INFO|configuration_utils.py:800] 2024-09-09 12:14:50,802 >> Model config RobertaConfig {
224
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
225
+ "architectures": [
226
+ "RobertaForMaskedLM"
227
+ ],
228
+ "attention_probs_dropout_prob": 0.1,
229
+ "bos_token_id": 0,
230
+ "classifier_dropout": null,
231
+ "eos_token_id": 2,
232
+ "gradient_checkpointing": false,
233
+ "hidden_act": "gelu",
234
+ "hidden_dropout_prob": 0.1,
235
+ "hidden_size": 768,
236
+ "initializer_range": 0.02,
237
+ "intermediate_size": 3072,
238
+ "layer_norm_eps": 1e-05,
239
+ "max_position_embeddings": 514,
240
+ "model_type": "roberta",
241
+ "num_attention_heads": 12,
242
+ "num_hidden_layers": 12,
243
+ "pad_token_id": 1,
244
+ "position_embedding_type": "absolute",
245
+ "transformers_version": "4.44.2",
246
+ "type_vocab_size": 1,
247
+ "use_cache": true,
248
+ "vocab_size": 50262
249
+ }
250
+
251
+ /usr/local/lib/python3.10/dist-packages/transformers/tokenization_utils_base.py:1601: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be depracted in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884
252
+ warnings.warn(
253
+ [INFO|configuration_utils.py:733] 2024-09-09 12:14:50,882 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
254
+ [INFO|configuration_utils.py:800] 2024-09-09 12:14:50,883 >> Model config RobertaConfig {
255
+ "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
256
+ "architectures": [
257
+ "RobertaForMaskedLM"
258
+ ],
259
+ "attention_probs_dropout_prob": 0.1,
260
+ "bos_token_id": 0,
261
+ "classifier_dropout": null,
262
+ "eos_token_id": 2,
263
+ "gradient_checkpointing": false,
264
+ "hidden_act": "gelu",
265
+ "hidden_dropout_prob": 0.1,
266
+ "hidden_size": 768,
267
+ "initializer_range": 0.02,
268
+ "intermediate_size": 3072,
269
+ "layer_norm_eps": 1e-05,
270
+ "max_position_embeddings": 514,
271
+ "model_type": "roberta",
272
+ "num_attention_heads": 12,
273
+ "num_hidden_layers": 12,
274
+ "pad_token_id": 1,
275
+ "position_embedding_type": "absolute",
276
+ "transformers_version": "4.44.2",
277
+ "type_vocab_size": 1,
278
+ "use_cache": true,
279
+ "vocab_size": 50262
280
+ }
281
+
282
+ [INFO|modeling_utils.py:3678] 2024-09-09 12:14:51,213 >> loading weights file pytorch_model.bin from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/pytorch_model.bin
283
+ [INFO|modeling_utils.py:4497] 2024-09-09 12:14:51,293 >> Some weights of the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es were not used when initializing RobertaForTokenClassification: ['lm_head.bias', 'lm_head.decoder.bias', 'lm_head.decoder.weight', 'lm_head.dense.bias', 'lm_head.dense.weight', 'lm_head.layer_norm.bias', 'lm_head.layer_norm.weight']
284
+ - This IS expected if you are initializing RobertaForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
285
+ - This IS NOT expected if you are initializing RobertaForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
286
+ [WARNING|modeling_utils.py:4509] 2024-09-09 12:14:51,293 >> Some weights of RobertaForTokenClassification were not initialized from the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es and are newly initialized: ['classifier.bias', 'classifier.weight']
287
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
288
+
289
+
290
+
291
+ /content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate
292
+ metric = load_metric("seqeval", trust_remote_code=True)
293
+ [INFO|trainer.py:811] 2024-09-09 12:14:55,082 >> The following columns in the training set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
294
+ [INFO|trainer.py:2134] 2024-09-09 12:14:55,636 >> ***** Running training *****
295
+ [INFO|trainer.py:2135] 2024-09-09 12:14:55,636 >> Num examples = 10,936
296
+ [INFO|trainer.py:2136] 2024-09-09 12:14:55,636 >> Num Epochs = 10
297
+ [INFO|trainer.py:2137] 2024-09-09 12:14:55,636 >> Instantaneous batch size per device = 32
298
+ [INFO|trainer.py:2140] 2024-09-09 12:14:55,636 >> Total train batch size (w. parallel, distributed & accumulation) = 64
299
+ [INFO|trainer.py:2141] 2024-09-09 12:14:55,636 >> Gradient Accumulation steps = 2
300
+ [INFO|trainer.py:2142] 2024-09-09 12:14:55,636 >> Total optimization steps = 1,710
301
+ [INFO|trainer.py:2143] 2024-09-09 12:14:55,637 >> Number of trainable parameters = 124,055,043
302
+
303
  0%| | 0/1710 [00:00<?, ?it/s]
304
  0%| | 1/1710 [00:01<32:09, 1.13s/it]
305
  0%| | 2/1710 [00:01<19:10, 1.48it/s]
306
  0%| | 3/1710 [00:01<16:10, 1.76it/s]
307
  0%| | 4/1710 [00:02<14:04, 2.02it/s]
308
  0%| | 5/1710 [00:02<13:32, 2.10it/s]
309
  0%| | 6/1710 [00:03<14:07, 2.01it/s]
310
  0%| | 7/1710 [00:03<12:53, 2.20it/s]
311
  0%| | 8/1710 [00:04<12:12, 2.32it/s]
312
  1%| | 9/1710 [00:04<12:30, 2.27it/s]
313
  1%| | 10/1710 [00:04<11:41, 2.42it/s]
314
  1%| | 11/1710 [00:05<12:06, 2.34it/s]
315
  1%| | 12/1710 [00:05<13:56, 2.03it/s]
316
  1%| | 13/1710 [00:06<14:13, 1.99it/s]
317
  1%| | 14/1710 [00:06<14:10, 2.00it/s]
318
  1%| | 15/1710 [00:07<14:07, 2.00it/s]
319
  1%| | 16/1710 [00:08<15:00, 1.88it/s]
320
  1%| | 17/1710 [00:08<13:46, 2.05it/s]
321
  1%| | 18/1710 [00:08<13:39, 2.06it/s]
322
  1%| | 19/1710 [00:09<12:48, 2.20it/s]
323
  1%| | 20/1710 [00:09<12:31, 2.25it/s]
324
  1%| | 21/1710 [00:10<12:28, 2.26it/s]
325
  1%|▏ | 22/1710 [00:10<14:21, 1.96it/s]
326
  1%|▏ | 23/1710 [00:11<14:32, 1.93it/s]
327
  1%|▏ | 24/1710 [00:11<13:26, 2.09it/s]
328
  1%|▏ | 25/1710 [00:12<14:27, 1.94it/s]
329
  2%|▏ | 26/1710 [00:12<13:07, 2.14it/s]
330
  2%|▏ | 27/1710 [00:13<14:22, 1.95it/s]
331
  2%|▏ | 28/1710 [00:13<13:51, 2.02it/s]
332
  2%|▏ | 29/1710 [00:14<14:49, 1.89it/s]
333
  2%|▏ | 30/1710 [00:14<13:40, 2.05it/s]
334
  2%|▏ | 31/1710 [00:15<13:01, 2.15it/s]
335
  2%|▏ | 32/1710 [00:15<14:15, 1.96it/s]
336
  2%|▏ | 33/1710 [00:16<18:22, 1.52it/s]
337
  2%|▏ | 34/1710 [00:17<18:55, 1.48it/s]
338
  2%|▏ | 35/1710 [00:17<16:24, 1.70it/s]
339
  2%|▏ | 36/1710 [00:18<14:21, 1.94it/s]
340
  2%|▏ | 37/1710 [00:19<17:15, 1.62it/s]
341
  2%|▏ | 38/1710 [00:19<15:50, 1.76it/s]
342
  2%|▏ | 39/1710 [00:19<14:13, 1.96it/s]
343
  2%|▏ | 40/1710 [00:20<14:20, 1.94it/s]
344
  2%|▏ | 41/1710 [00:20<13:25, 2.07it/s]
345
  2%|▏ | 42/1710 [00:21<14:16, 1.95it/s]
346
  3%|▎ | 43/1710 [00:21<14:07, 1.97it/s]
347
  3%|▎ | 44/1710 [00:22<13:33, 2.05it/s]
348
  3%|▎ | 45/1710 [00:22<12:56, 2.14it/s]
349
  3%|▎ | 46/1710 [00:23<12:49, 2.16it/s]
350
  3%|▎ | 47/1710 [00:23<12:51, 2.16it/s]
351
  3%|▎ | 48/1710 [00:24<12:06, 2.29it/s]
352
  3%|▎ | 49/1710 [00:24<15:02, 1.84it/s]
353
  3%|▎ | 50/1710 [00:25<14:06, 1.96it/s]
354
  3%|▎ | 51/1710 [00:25<13:11, 2.10it/s]
355
  3%|▎ | 52/1710 [00:26<12:45, 2.17it/s]
356
  3%|▎ | 53/1710 [00:26<12:22, 2.23it/s]
357
  3%|▎ | 54/1710 [00:27<12:33, 2.20it/s]
358
  3%|▎ | 55/1710 [00:27<15:05, 1.83it/s]
359
  3%|▎ | 56/1710 [00:28<13:50, 1.99it/s]
360
  3%|▎ | 57/1710 [00:28<13:48, 2.00it/s]
361
  3%|▎ | 58/1710 [00:29<12:17, 2.24it/s]
362
  3%|▎ | 59/1710 [00:29<11:30, 2.39it/s]
363
  4%|▎ | 60/1710 [00:29<11:26, 2.40it/s]
364
  4%|▎ | 61/1710 [00:30<12:02, 2.28it/s]
365
  4%|▎ | 62/1710 [00:31<14:35, 1.88it/s]
366
  4%|▎ | 63/1710 [00:31<13:25, 2.05it/s]
367
  4%|▎ | 64/1710 [00:31<12:02, 2.28it/s]
368
  4%|▍ | 65/1710 [00:32<12:17, 2.23it/s]
369
  4%|▍ | 66/1710 [00:32<11:20, 2.42it/s]
370
  4%|▍ | 67/1710 [00:33<12:26, 2.20it/s]
371
  4%|▍ | 68/1710 [00:33<12:17, 2.23it/s]
372
  4%|▍ | 69/1710 [00:33<12:09, 2.25it/s]
373
  4%|▍ | 70/1710 [00:34<12:14, 2.23it/s]
374
  4%|▍ | 71/1710 [00:34<11:59, 2.28it/s]
375
  4%|▍ | 72/1710 [00:35<12:12, 2.24it/s]
376
  4%|▍ | 73/1710 [00:35<11:23, 2.40it/s]
377
  4%|▍ | 74/1710 [00:36<11:55, 2.29it/s]
378
  4%|▍ | 75/1710 [00:36<11:33, 2.36it/s]
379
  4%|▍ | 76/1710 [00:37<13:03, 2.09it/s]
380
  5%|▍ | 77/1710 [00:37<13:12, 2.06it/s]
381
  5%|▍ | 78/1710 [00:38<14:10, 1.92it/s]
382
  5%|▍ | 79/1710 [00:38<14:31, 1.87it/s]
383
  5%|▍ | 80/1710 [00:39<13:57, 1.95it/s]
384
  5%|▍ | 81/1710 [00:39<13:52, 1.96it/s]
385
  5%|▍ | 82/1710 [00:40<12:48, 2.12it/s]
386
  5%|▍ | 83/1710 [00:40<14:18, 1.90it/s]
387
  5%|▍ | 84/1710 [00:41<13:36, 1.99it/s]
388
  5%|▍ | 85/1710 [00:41<12:53, 2.10it/s]
389
  5%|▌ | 86/1710 [00:42<12:27, 2.17it/s]
390
  5%|▌ | 87/1710 [00:42<12:30, 2.16it/s]
391
  5%|▌ | 88/1710 [00:43<12:09, 2.22it/s]
392
  5%|▌ | 89/1710 [00:43<12:54, 2.09it/s]
393
  5%|▌ | 90/1710 [00:43<12:16, 2.20it/s]
394
  5%|▌ | 91/1710 [00:44<12:47, 2.11it/s]
395
  5%|▌ | 92/1710 [00:44<12:29, 2.16it/s]
396
  5%|▌ | 93/1710 [00:45<12:22, 2.18it/s]
397
  5%|▌ | 94/1710 [00:45<12:03, 2.23it/s]
398
  6%|▌ | 95/1710 [00:46<12:00, 2.24it/s]
399
  6%|▌ | 96/1710 [00:46<13:09, 2.05it/s]
400
  6%|▌ | 97/1710 [00:47<12:05, 2.22it/s]
401
  6%|▌ | 98/1710 [00:47<11:19, 2.37it/s]
402
  6%|▌ | 99/1710 [00:47<10:59, 2.44it/s]
403
  6%|▌ | 100/1710 [00:48<11:51, 2.26it/s]
404
  6%|▌ | 101/1710 [00:48<11:43, 2.29it/s]
405
  6%|▌ | 102/1710 [00:49<11:46, 2.28it/s]
406
  6%|▌ | 103/1710 [00:49<11:30, 2.33it/s]
407
  6%|▌ | 104/1710 [00:50<12:02, 2.22it/s]
408
  6%|▌ | 105/1710 [00:50<11:09, 2.40it/s]
409
  6%|▌ | 106/1710 [00:50<11:00, 2.43it/s]
410
  6%|▋ | 107/1710 [00:51<11:12, 2.38it/s]
411
  6%|▋ | 108/1710 [00:51<10:58, 2.43it/s]
412
  6%|▋ | 109/1710 [00:52<10:58, 2.43it/s]
413
  6%|▋ | 110/1710 [00:52<11:53, 2.24it/s]
414
  6%|▋ | 111/1710 [00:53<11:47, 2.26it/s]
415
  7%|▋ | 112/1710 [00:53<11:39, 2.29it/s]
416
  7%|▋ | 113/1710 [00:53<11:16, 2.36it/s]
417
  7%|▋ | 114/1710 [00:54<11:12, 2.37it/s]
418
  7%|▋ | 115/1710 [00:54<10:35, 2.51it/s]
419
  7%|▋ | 116/1710 [00:55<11:13, 2.37it/s]
420
  7%|▋ | 117/1710 [00:55<11:17, 2.35it/s]
421
  7%|▋ | 118/1710 [00:56<14:58, 1.77it/s]
422
  7%|▋ | 119/1710 [00:56<14:07, 1.88it/s]
423
  7%|▋ | 120/1710 [00:57<13:45, 1.93it/s]
424
  7%|▋ | 121/1710 [00:57<12:26, 2.13it/s]
425
  7%|▋ | 122/1710 [00:58<11:56, 2.22it/s]
426
  7%|▋ | 123/1710 [00:58<11:05, 2.39it/s]
427
  7%|▋ | 124/1710 [00:58<10:58, 2.41it/s]
428
  7%|▋ | 125/1710 [00:59<10:03, 2.63it/s]
429
  7%|▋ | 126/1710 [00:59<10:30, 2.51it/s]
430
  7%|▋ | 127/1710 [01:00<10:41, 2.47it/s]
431
  7%|▋ | 128/1710 [01:00<10:48, 2.44it/s]
432
  8%|▊ | 129/1710 [01:00<10:51, 2.42it/s]
433
  8%|▊ | 130/1710 [01:01<11:48, 2.23it/s]
434
  8%|▊ | 131/1710 [01:01<11:11, 2.35it/s]
435
  8%|▊ | 132/1710 [01:02<11:31, 2.28it/s]
436
  8%|▊ | 133/1710 [01:02<11:40, 2.25it/s]
437
  8%|▊ | 134/1710 [01:03<10:50, 2.42it/s]
438
  8%|▊ | 135/1710 [01:03<10:17, 2.55it/s]
439
  8%|▊ | 136/1710 [01:03<10:39, 2.46it/s]
440
  8%|▊ | 137/1710 [01:04<11:22, 2.30it/s]
441
  8%|▊ | 138/1710 [01:04<11:21, 2.31it/s]
442
  8%|▊ | 139/1710 [01:05<11:55, 2.20it/s]
443
  8%|▊ | 140/1710 [01:06<14:01, 1.87it/s]
444
  8%|▊ | 141/1710 [01:06<12:55, 2.02it/s]
445
  8%|▊ | 142/1710 [01:07<13:39, 1.91it/s]
446
  8%|▊ | 143/1710 [01:07<12:42, 2.06it/s]
447
  8%|▊ | 144/1710 [01:07<11:24, 2.29it/s]
448
  8%|▊ | 145/1710 [01:08<11:51, 2.20it/s]
449
  9%|▊ | 146/1710 [01:08<12:38, 2.06it/s]
450
  9%|▊ | 147/1710 [01:09<12:53, 2.02it/s]
451
  9%|▊ | 148/1710 [01:09<11:37, 2.24it/s]
452
  9%|▊ | 149/1710 [01:10<13:00, 2.00it/s]
453
  9%|▉ | 150/1710 [01:10<13:03, 1.99it/s]
454
  9%|▉ | 151/1710 [01:11<12:32, 2.07it/s]
455
  9%|▉ | 152/1710 [01:11<12:23, 2.10it/s]
456
  9%|▉ | 153/1710 [01:12<11:41, 2.22it/s]
457
  9%|▉ | 154/1710 [01:12<11:02, 2.35it/s]
458
  9%|▉ | 155/1710 [01:12<10:28, 2.48it/s]
459
  9%|▉ | 156/1710 [01:13<11:00, 2.35it/s]
460
  9%|▉ | 157/1710 [01:13<10:35, 2.44it/s]
461
  9%|▉ | 158/1710 [01:14<10:03, 2.57it/s]
462
  9%|▉ | 159/1710 [01:14<10:55, 2.37it/s]
463
  9%|▉ | 160/1710 [01:14<11:03, 2.34it/s]
464
  9%|▉ | 161/1710 [01:15<10:27, 2.47it/s]
465
  9%|▉ | 162/1710 [01:15<10:53, 2.37it/s]
466
  10%|▉ | 163/1710 [01:16<11:08, 2.31it/s]
467
  10%|▉ | 164/1710 [01:16<10:45, 2.39it/s]
468
  10%|▉ | 165/1710 [01:17<11:08, 2.31it/s]
469
  10%|▉ | 166/1710 [01:17<12:47, 2.01it/s]
470
  10%|▉ | 167/1710 [01:18<11:48, 2.18it/s]
471
  10%|▉ | 168/1710 [01:18<11:28, 2.24it/s]
472
  10%|▉ | 169/1710 [01:19<12:21, 2.08it/s]
473
  10%|▉ | 170/1710 [01:19<11:20, 2.26it/s]
474
  10%|█ | 171/1710 [01:19<11:08, 2.30it/s][INFO|trainer.py:811] 2024-09-09 12:16:15,508 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
475
+ [INFO|trainer.py:3819] 2024-09-09 12:16:15,510 >>
476
+ ***** Running Evaluation *****
477
+ [INFO|trainer.py:3821] 2024-09-09 12:16:15,510 >> Num examples = 2519
478
+ [INFO|trainer.py:3824] 2024-09-09 12:16:15,510 >> Batch size = 8
479
+
480
+
481
  0%| | 0/315 [00:00<?, ?it/s]
482
+
483
  3%|▎ | 8/315 [00:00<00:04, 74.15it/s]
484
+
485
  5%|▌ | 16/315 [00:00<00:04, 72.87it/s]
486
+
487
  8%|▊ | 24/315 [00:00<00:03, 74.59it/s]
488
+
489
  10%|█ | 32/315 [00:00<00:04, 70.63it/s]
490
+
491
  13%|█▎ | 40/315 [00:00<00:03, 71.80it/s]
492
+
493
  15%|█▌ | 48/315 [00:00<00:03, 72.49it/s]
494
+
495
  18%|█▊ | 56/315 [00:00<00:03, 72.18it/s]
496
+
497
  20%|██ | 64/315 [00:00<00:03, 70.11it/s]
498
+
499
  23%|██▎ | 72/315 [00:00<00:03, 72.26it/s]
500
+
501
  25%|██▌ | 80/315 [00:01<00:03, 68.95it/s]
502
+
503
  28%|██▊ | 87/315 [00:01<00:03, 67.94it/s]
504
+
505
  30%|███ | 95/315 [00:01<00:03, 69.32it/s]
506
+
507
  32%|███▏ | 102/315 [00:01<00:03, 65.97it/s]
508
+
509
  35%|███▍ | 110/315 [00:01<00:02, 68.77it/s]
510
+
511
  37%|███▋ | 118/315 [00:01<00:02, 70.24it/s]
512
+
513
  40%|████ | 126/315 [00:01<00:02, 67.00it/s]
514
+
515
  43%|████▎ | 134/315 [00:01<00:02, 67.51it/s]
516
+
517
  45%|████▍ | 141/315 [00:02<00:02, 68.03it/s]
518
+
519
  47%|████▋ | 149/315 [00:02<00:02, 70.61it/s]
520
+
521
  50%|████▉ | 157/315 [00:02<00:02, 72.86it/s]
522
+
523
  52%|█████▏ | 165/315 [00:02<00:02, 71.30it/s]
524
+
525
  55%|█████▍ | 173/315 [00:02<00:02, 70.07it/s]
526
+
527
  57%|█████▋ | 181/315 [00:02<00:01, 67.81it/s]
528
+
529
  60%|██████ | 189/315 [00:02<00:01, 68.05it/s]
530
+
531
  62%|██████▏ | 196/315 [00:02<00:01, 67.00it/s]
532
+
533
  64%|██████▍ | 203/315 [00:02<00:01, 64.45it/s]
534
+
535
  67%|██████▋ | 210/315 [00:03<00:01, 65.01it/s]
536
+
537
  69%|██████▉ | 218/315 [00:03<00:01, 68.74it/s]
538
+
539
  72%|███████▏ | 226/315 [00:03<00:01, 71.36it/s]
540
+
541
  75%|███████▍ | 235/315 [00:03<00:01, 74.60it/s]
542
+
543
  77%|███████▋ | 243/315 [00:03<00:01, 70.81it/s]
544
+
545
  80%|███████▉ | 251/315 [00:03<00:00, 70.96it/s]
546
+
547
  82%|████████▏ | 259/315 [00:03<00:00, 68.92it/s]
548
+
549
  85%|████████▍ | 267/315 [00:03<00:00, 70.16it/s]
550
+
551
  88%|████████▊ | 276/315 [00:03<00:00, 73.45it/s]
552
+
553
  90%|█████████ | 284/315 [00:04<00:00, 73.52it/s]
554
+
555
  93%|█████████▎| 292/315 [00:04<00:00, 71.60it/s]
556
+
557
  95%|█████████▌| 300/315 [00:04<00:00, 71.31it/s]
558
+
559
  98%|█████████▊| 308/315 [00:04<00:00, 71.30it/s]
560
 
561
+
562
 
563
  10%|█ | 171/1710 [01:25<11:08, 2.30it/s]
564
+
565
+
566
  [INFO|trainer.py:3503] 2024-09-09 12:16:21,499 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-171
567
+ [INFO|configuration_utils.py:472] 2024-09-09 12:16:21,501 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-171/config.json
568
+ [INFO|modeling_utils.py:2799] 2024-09-09 12:16:22,527 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-171/model.safetensors
569
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 12:16:22,528 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-171/tokenizer_config.json
570
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 12:16:22,529 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-171/special_tokens_map.json
571
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 12:16:25,565 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
572
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 12:16:25,565 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
573
+
574
  10%|█ | 172/1710 [01:30<1:27:43, 3.42s/it]
575
  10%|█ | 173/1710 [01:30<1:05:49, 2.57s/it]
576
  10%|█ | 174/1710 [01:31<49:01, 1.92s/it]
577
  10%|█ | 175/1710 [01:31<37:24, 1.46s/it]
578
  10%|█ | 176/1710 [01:32<29:43, 1.16s/it]
579
  10%|█ | 177/1710 [01:32<23:13, 1.10it/s]
580
  10%|█ | 178/1710 [01:32<19:22, 1.32it/s]
581
  10%|█ | 179/1710 [01:33<16:39, 1.53it/s]
582
  11%|█ | 180/1710 [01:33<14:52, 1.71it/s]
583
  11%|█ | 181/1710 [01:34<13:53, 1.84it/s]
584
  11%|█ | 182/1710 [01:34<13:02, 1.95it/s]
585
  11%|█ | 183/1710 [01:34<12:03, 2.11it/s]
586
  11%|█ | 184/1710 [01:35<11:05, 2.29it/s]
587
  11%|█ | 185/1710 [01:35<11:05, 2.29it/s]
588
  11%|█ | 186/1710 [01:36<10:52, 2.33it/s]
589
  11%|█ | 187/1710 [01:36<10:16, 2.47it/s]
590
  11%|█ | 188/1710 [01:37<11:20, 2.24it/s]
591
  11%|█ | 189/1710 [01:37<10:06, 2.51it/s]
592
  11%|█ | 190/1710 [01:37<10:00, 2.53it/s]
593
  11%|█ | 191/1710 [01:38<10:40, 2.37it/s]
594
  11%|█ | 192/1710 [01:38<13:43, 1.84it/s]
595
  11%|█▏ | 193/1710 [01:39<13:01, 1.94it/s]
596
  11%|█▏ | 194/1710 [01:40<14:45, 1.71it/s]
597
  11%|█▏ | 195/1710 [01:40<13:18, 1.90it/s]
598
  11%|█▏ | 196/1710 [01:41<12:48, 1.97it/s]
599
  12%|█▏ | 197/1710 [01:41<11:50, 2.13it/s]
600
  12%|█▏ | 198/1710 [01:41<12:19, 2.05it/s]
601
  12%|█▏ | 199/1710 [01:42<11:26, 2.20it/s]
602
  12%|█▏ | 200/1710 [01:42<11:07, 2.26it/s]
603
  12%|█▏ | 201/1710 [01:43<11:23, 2.21it/s]
604
  12%|█▏ | 202/1710 [01:43<11:44, 2.14it/s]
605
  12%|█▏ | 203/1710 [01:44<11:12, 2.24it/s]
606
  12%|█▏ | 204/1710 [01:44<11:04, 2.27it/s]
607
  12%|█▏ | 205/1710 [01:44<10:26, 2.40it/s]
608
  12%|█▏ | 206/1710 [01:45<10:31, 2.38it/s]
609
  12%|█▏ | 207/1710 [01:45<10:37, 2.36it/s]
610
  12%|█▏ | 208/1710 [01:46<10:40, 2.35it/s]
611
  12%|█▏ | 209/1710 [01:46<10:26, 2.40it/s]
612
  12%|█▏ | 210/1710 [01:47<10:21, 2.41it/s]
613
  12%|█▏ | 211/1710 [01:47<13:31, 1.85it/s]
614
  12%|█▏ | 212/1710 [01:48<12:25, 2.01it/s]
615
  12%|█▏ | 213/1710 [01:48<11:29, 2.17it/s]
616
  13%|█▎ | 214/1710 [01:48<10:48, 2.31it/s]
617
  13%|█▎ | 215/1710 [01:49<11:08, 2.24it/s]
618
  13%|█▎ | 216/1710 [01:49<11:34, 2.15it/s]
619
  13%|█▎ | 217/1710 [01:50<10:57, 2.27it/s]
620
  13%|█▎ | 218/1710 [01:50<11:25, 2.18it/s]
621
  13%|█▎ | 219/1710 [01:51<10:37, 2.34it/s]
622
  13%|█▎ | 220/1710 [01:51<10:59, 2.26it/s]
623
  13%|█▎ | 221/1710 [01:52<11:41, 2.12it/s]
624
  13%|█▎ | 222/1710 [01:52<11:35, 2.14it/s]
625
  13%|█▎ | 223/1710 [01:53<10:35, 2.34it/s]
626
  13%|█▎ | 224/1710 [01:53<10:22, 2.39it/s]
627
  13%|█▎ | 225/1710 [01:53<11:22, 2.18it/s]
628
  13%|█▎ | 226/1710 [01:54<10:48, 2.29it/s]
629
  13%|█▎ | 227/1710 [01:55<15:06, 1.64it/s]
630
  13%|█▎ | 228/1710 [01:55<15:03, 1.64it/s]
631
  13%|█▎ | 229/1710 [01:56<13:49, 1.79it/s]
632
  13%|█▎ | 230/1710 [01:56<13:40, 1.80it/s]
633
  14%|█▎ | 231/1710 [01:57<12:47, 1.93it/s]
634
  14%|█▎ | 232/1710 [01:57<11:18, 2.18it/s]
635
  14%|█▎ | 233/1710 [01:58<11:45, 2.09it/s]
636
  14%|█▎ | 234/1710 [01:58<11:04, 2.22it/s]
637
  14%|█▎ | 235/1710 [01:58<10:23, 2.37it/s]
638
  14%|█▍ | 236/1710 [01:59<10:08, 2.42it/s]
639
  14%|█▍ | 237/1710 [01:59<11:05, 2.21it/s]
640
  14%|█▍ | 238/1710 [02:00<13:19, 1.84it/s]
641
  14%|█▍ | 239/1710 [02:01<12:42, 1.93it/s]
642
  14%|█▍ | 240/1710 [02:01<11:38, 2.10it/s]
643
  14%|█▍ | 241/1710 [02:01<10:37, 2.30it/s]
644
  14%|█▍ | 242/1710 [02:02<10:17, 2.38it/s]
645
  14%|█▍ | 243/1710 [02:02<10:50, 2.25it/s]
646
  14%|█▍ | 244/1710 [02:03<10:29, 2.33it/s]
647
  14%|█▍ | 245/1710 [02:03<10:30, 2.32it/s]
648
  14%|█▍ | 246/1710 [02:04<11:29, 2.12it/s]
649
  14%|█▍ | 247/1710 [02:04<11:58, 2.04it/s]
650
  15%|█▍ | 248/1710 [02:05<11:34, 2.10it/s]
651
  15%|█▍ | 249/1710 [02:05<10:23, 2.34it/s]
652
  15%|█▍ | 250/1710 [02:05<10:26, 2.33it/s]
653
  15%|█▍ | 251/1710 [02:06<10:35, 2.30it/s]
654
  15%|█▍ | 252/1710 [02:06<10:23, 2.34it/s]
655
  15%|█▍ | 253/1710 [02:07<10:17, 2.36it/s]
656
  15%|█▍ | 254/1710 [02:07<12:00, 2.02it/s]
657
  15%|█▍ | 255/1710 [02:08<11:09, 2.17it/s]
658
  15%|█▍ | 256/1710 [02:08<11:16, 2.15it/s]
659
  15%|█▌ | 257/1710 [02:09<11:21, 2.13it/s]
660
  15%|█▌ | 258/1710 [02:09<10:36, 2.28it/s]
661
  15%|█▌ | 259/1710 [02:09<10:12, 2.37it/s]
662
  15%|█▌ | 260/1710 [02:10<10:50, 2.23it/s]
663
  15%|█▌ | 261/1710 [02:10<11:02, 2.19it/s]
664
  15%|█▌ | 262/1710 [02:11<11:02, 2.18it/s]
665
  15%|█▌ | 263/1710 [02:11<10:14, 2.35it/s]
666
  15%|█▌ | 264/1710 [02:12<11:19, 2.13it/s]
667
  15%|█▌ | 265/1710 [02:12<13:03, 1.84it/s]
668
  16%|█▌ | 266/1710 [02:13<11:58, 2.01it/s]
669
  16%|█▌ | 267/1710 [02:13<11:15, 2.14it/s]
670
  16%|█▌ | 268/1710 [02:14<11:35, 2.07it/s]
671
  16%|█▌ | 269/1710 [02:14<11:31, 2.08it/s]
672
  16%|█▌ | 270/1710 [02:15<11:24, 2.11it/s]
673
  16%|█▌ | 271/1710 [02:15<11:16, 2.13it/s]
674
  16%|█▌ | 272/1710 [02:16<11:15, 2.13it/s]
675
  16%|█▌ | 273/1710 [02:16<11:04, 2.16it/s]
676
  16%|█▌ | 274/1710 [02:17<12:48, 1.87it/s]
677
  16%|█▌ | 275/1710 [02:17<11:30, 2.08it/s]
678
  16%|█▌ | 276/1710 [02:17<10:30, 2.28it/s]
679
  16%|█▌ | 277/1710 [02:18<10:22, 2.30it/s]
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.975429975429975,
3
+ "total_flos": 6404835399317064.0,
4
+ "train_loss": 0.04138289297302368,
5
+ "train_runtime": 1065.756,
6
+ "train_samples": 13013,
7
+ "train_samples_per_second": 122.101,
8
+ "train_steps_per_second": 1.905
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6984379136881121,
3
+ "best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-1831",
4
+ "epoch": 9.975429975429975,
5
+ "eval_steps": 500,
6
+ "global_step": 2030,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.9975429975429976,
13
+ "eval_accuracy": 0.9467740383072925,
14
+ "eval_f1": 0.6143236074270556,
15
+ "eval_loss": 0.15010379254817963,
16
+ "eval_precision": 0.5959855892949047,
17
+ "eval_recall": 0.6338259441707718,
18
+ "eval_runtime": 5.907,
19
+ "eval_samples_per_second": 426.445,
20
+ "eval_steps_per_second": 53.327,
21
+ "step": 203
22
+ },
23
+ {
24
+ "epoch": 2.0,
25
+ "eval_accuracy": 0.949244441592608,
26
+ "eval_f1": 0.6728575218890952,
27
+ "eval_loss": 0.17612887918949127,
28
+ "eval_precision": 0.6529351184346035,
29
+ "eval_recall": 0.6940339354132458,
30
+ "eval_runtime": 5.8933,
31
+ "eval_samples_per_second": 427.436,
32
+ "eval_steps_per_second": 53.451,
33
+ "step": 407
34
+ },
35
+ {
36
+ "epoch": 2.457002457002457,
37
+ "grad_norm": 0.6181371212005615,
38
+ "learning_rate": 3.768472906403941e-05,
39
+ "loss": 0.1312,
40
+ "step": 500
41
+ },
42
+ {
43
+ "epoch": 2.9975429975429977,
44
+ "eval_accuracy": 0.9469665372645898,
45
+ "eval_f1": 0.671967171069505,
46
+ "eval_loss": 0.1995203047990799,
47
+ "eval_precision": 0.6322393822393823,
48
+ "eval_recall": 0.7170224411603722,
49
+ "eval_runtime": 5.8448,
50
+ "eval_samples_per_second": 430.983,
51
+ "eval_steps_per_second": 53.894,
52
+ "step": 610
53
+ },
54
+ {
55
+ "epoch": 4.0,
56
+ "eval_accuracy": 0.9482979883858963,
57
+ "eval_f1": 0.6774025974025973,
58
+ "eval_loss": 0.21822449564933777,
59
+ "eval_precision": 0.6445872466633712,
60
+ "eval_recall": 0.7137383689107827,
61
+ "eval_runtime": 5.872,
62
+ "eval_samples_per_second": 428.988,
63
+ "eval_steps_per_second": 53.645,
64
+ "step": 814
65
+ },
66
+ {
67
+ "epoch": 4.914004914004914,
68
+ "grad_norm": 0.7616795301437378,
69
+ "learning_rate": 2.5369458128078822e-05,
70
+ "loss": 0.0248,
71
+ "step": 1000
72
+ },
73
+ {
74
+ "epoch": 4.997542997542998,
75
+ "eval_accuracy": 0.9448650903140942,
76
+ "eval_f1": 0.6700533401066802,
77
+ "eval_loss": 0.24612903594970703,
78
+ "eval_precision": 0.6251184834123222,
79
+ "eval_recall": 0.7219485495347564,
80
+ "eval_runtime": 5.8462,
81
+ "eval_samples_per_second": 430.877,
82
+ "eval_steps_per_second": 53.881,
83
+ "step": 1017
84
+ },
85
+ {
86
+ "epoch": 6.0,
87
+ "eval_accuracy": 0.9469023709454907,
88
+ "eval_f1": 0.6827021494370521,
89
+ "eval_loss": 0.26953065395355225,
90
+ "eval_precision": 0.6410379625180201,
91
+ "eval_recall": 0.7301587301587301,
92
+ "eval_runtime": 5.9067,
93
+ "eval_samples_per_second": 426.468,
94
+ "eval_steps_per_second": 53.33,
95
+ "step": 1221
96
+ },
97
+ {
98
+ "epoch": 6.997542997542998,
99
+ "eval_accuracy": 0.9469986204241394,
100
+ "eval_f1": 0.6910590054109765,
101
+ "eval_loss": 0.2829184830188751,
102
+ "eval_precision": 0.6528724440116845,
103
+ "eval_recall": 0.7339901477832512,
104
+ "eval_runtime": 5.8572,
105
+ "eval_samples_per_second": 430.069,
106
+ "eval_steps_per_second": 53.78,
107
+ "step": 1424
108
+ },
109
+ {
110
+ "epoch": 7.371007371007371,
111
+ "grad_norm": 0.2855200171470642,
112
+ "learning_rate": 1.3054187192118228e-05,
113
+ "loss": 0.0081,
114
+ "step": 1500
115
+ },
116
+ {
117
+ "epoch": 8.0,
118
+ "eval_accuracy": 0.9494048573903558,
119
+ "eval_f1": 0.6938127974616606,
120
+ "eval_loss": 0.29823970794677734,
121
+ "eval_precision": 0.6710997442455243,
122
+ "eval_recall": 0.7181171319102354,
123
+ "eval_runtime": 5.8929,
124
+ "eval_samples_per_second": 427.463,
125
+ "eval_steps_per_second": 53.454,
126
+ "step": 1628
127
+ },
128
+ {
129
+ "epoch": 8.997542997542997,
130
+ "eval_accuracy": 0.9500465205813469,
131
+ "eval_f1": 0.6984379136881121,
132
+ "eval_loss": 0.30729904770851135,
133
+ "eval_precision": 0.6764102564102564,
134
+ "eval_recall": 0.7219485495347564,
135
+ "eval_runtime": 5.8665,
136
+ "eval_samples_per_second": 429.386,
137
+ "eval_steps_per_second": 53.695,
138
+ "step": 1831
139
+ },
140
+ {
141
+ "epoch": 9.828009828009828,
142
+ "grad_norm": 0.6682894825935364,
143
+ "learning_rate": 7.389162561576355e-07,
144
+ "loss": 0.0038,
145
+ "step": 2000
146
+ },
147
+ {
148
+ "epoch": 9.975429975429975,
149
+ "eval_accuracy": 0.9500465205813469,
150
+ "eval_f1": 0.6931427058512046,
151
+ "eval_loss": 0.3079104423522949,
152
+ "eval_precision": 0.6712820512820513,
153
+ "eval_recall": 0.7164750957854407,
154
+ "eval_runtime": 5.9033,
155
+ "eval_samples_per_second": 426.708,
156
+ "eval_steps_per_second": 53.36,
157
+ "step": 2030
158
+ },
159
+ {
160
+ "epoch": 9.975429975429975,
161
+ "step": 2030,
162
+ "total_flos": 6404835399317064.0,
163
+ "train_loss": 0.04138289297302368,
164
+ "train_runtime": 1065.756,
165
+ "train_samples_per_second": 122.101,
166
+ "train_steps_per_second": 1.905
167
+ }
168
+ ],
169
+ "logging_steps": 500,
170
+ "max_steps": 2030,
171
+ "num_input_tokens_seen": 0,
172
+ "num_train_epochs": 10,
173
+ "save_steps": 500,
174
+ "stateful_callbacks": {
175
+ "TrainerControl": {
176
+ "args": {
177
+ "should_epoch_stop": false,
178
+ "should_evaluate": false,
179
+ "should_log": false,
180
+ "should_save": true,
181
+ "should_training_stop": true
182
+ },
183
+ "attributes": {}
184
+ }
185
+ },
186
+ "total_flos": 6404835399317064.0,
187
+ "train_batch_size": 32,
188
+ "trial_name": null,
189
+ "trial_params": null
190
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13556e6c97b2f39e25d5830ab0bc61ce81f807bcf643d150d23dd97c2f606c57
3
+ size 5240
vocab.json ADDED
The diff for this file is too large to render. See raw diff