--- library_name: transformers license: apache-2.0 base_model: PlanTL-GOB-ES/bsc-bio-ehr-es tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/symptemist-fasttext-85-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/symptemist-fasttext-85-ner type: Rodrigo1771/symptemist-fasttext-85-ner config: SympTEMIST NER split: validation args: SympTEMIST NER metrics: - name: Precision type: precision value: 0.6529382219989954 - name: Recall type: recall value: 0.7115489874110563 - name: F1 type: f1 value: 0.680984808800419 - name: Accuracy type: accuracy value: 0.9473354935994097 --- # output This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/symptemist-fasttext-85-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.2808 - Precision: 0.6529 - Recall: 0.7115 - F1: 0.6810 - Accuracy: 0.9473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 171 | 0.1502 | 0.5421 | 0.6765 | 0.6019 | 0.9458 | | No log | 2.0 | 342 | 0.1539 | 0.5958 | 0.6793 | 0.6348 | 0.9468 | | 0.1273 | 3.0 | 513 | 0.1838 | 0.6326 | 0.7077 | 0.6680 | 0.9468 | | 0.1273 | 4.0 | 684 | 0.2018 | 0.6322 | 0.7121 | 0.6698 | 0.9466 | | 0.1273 | 5.0 | 855 | 0.2153 | 0.6441 | 0.7192 | 0.6796 | 0.9465 | | 0.0234 | 6.0 | 1026 | 0.2498 | 0.6461 | 0.7006 | 0.6723 | 0.9470 | | 0.0234 | 7.0 | 1197 | 0.2653 | 0.6362 | 0.7209 | 0.6759 | 0.9462 | | 0.0234 | 8.0 | 1368 | 0.2808 | 0.6529 | 0.7115 | 0.6810 | 0.9473 | | 0.0082 | 9.0 | 1539 | 0.2917 | 0.6458 | 0.7115 | 0.6771 | 0.9467 | | 0.0082 | 10.0 | 1710 | 0.2930 | 0.6548 | 0.7072 | 0.6800 | 0.9481 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1