--- library_name: transformers license: apache-2.0 base_model: PlanTL-GOB-ES/bsc-bio-ehr-es tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/symptemist-75-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/symptemist-75-ner type: Rodrigo1771/symptemist-75-ner config: SympTEMIST NER split: validation args: SympTEMIST NER metrics: - name: Precision type: precision value: 0.6896 - name: Recall type: recall value: 0.7077175697865353 - name: F1 type: f1 value: 0.6985413290113451 - name: Accuracy type: accuracy value: 0.9496936058263018 --- # output This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/symptemist-75-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.3089 - Precision: 0.6896 - Recall: 0.7077 - F1: 0.6985 - Accuracy: 0.9497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 248 | 0.1649 | 0.5942 | 0.6820 | 0.6351 | 0.9478 | | No log | 2.0 | 496 | 0.1815 | 0.6558 | 0.6705 | 0.6631 | 0.9476 | | 0.134 | 3.0 | 744 | 0.2111 | 0.6651 | 0.6979 | 0.6811 | 0.9492 | | 0.134 | 4.0 | 992 | 0.2523 | 0.6692 | 0.7121 | 0.6900 | 0.9488 | | 0.026 | 5.0 | 1240 | 0.2771 | 0.6584 | 0.7132 | 0.6847 | 0.9491 | | 0.026 | 6.0 | 1488 | 0.2968 | 0.6668 | 0.7165 | 0.6908 | 0.9486 | | 0.0084 | 7.0 | 1736 | 0.3089 | 0.6896 | 0.7077 | 0.6985 | 0.9497 | | 0.0084 | 8.0 | 1984 | 0.3188 | 0.6825 | 0.7072 | 0.6946 | 0.9499 | | 0.0042 | 9.0 | 2232 | 0.3296 | 0.6809 | 0.7159 | 0.6980 | 0.9495 | | 0.0042 | 10.0 | 2480 | 0.3328 | 0.6814 | 0.7165 | 0.6985 | 0.9499 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1