End of training
Browse files- README.md +14 -13
- all_results.json +23 -23
- eval_results.json +9 -9
- predict_results.json +8 -8
- predictions.txt +0 -0
- tb/events.out.tfevents.1725476139.a5c501872057.6105.1 +3 -0
- train.log +48 -0
- train_results.json +7 -7
- trainer_state.json +126 -126
README.md
CHANGED
@@ -3,9 +3,10 @@ library_name: transformers
|
|
3 |
license: apache-2.0
|
4 |
base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
|
5 |
tags:
|
|
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
-
- symptemist-8-ner
|
9 |
metrics:
|
10 |
- precision
|
11 |
- recall
|
@@ -18,24 +19,24 @@ model-index:
|
|
18 |
name: Token Classification
|
19 |
type: token-classification
|
20 |
dataset:
|
21 |
-
name: symptemist-8-ner
|
22 |
-
type: symptemist-8-ner
|
23 |
config: SympTEMIST NER
|
24 |
split: validation
|
25 |
args: SympTEMIST NER
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
-
value: 0.
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,13 +44,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
# output
|
45 |
|
46 |
-
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the symptemist-8-ner dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
-
- Accuracy: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
|
|
3 |
license: apache-2.0
|
4 |
base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
|
5 |
tags:
|
6 |
+
- token-classification
|
7 |
- generated_from_trainer
|
8 |
datasets:
|
9 |
+
- Rodrigo1771/symptemist-8-ner
|
10 |
metrics:
|
11 |
- precision
|
12 |
- recall
|
|
|
19 |
name: Token Classification
|
20 |
type: token-classification
|
21 |
dataset:
|
22 |
+
name: Rodrigo1771/symptemist-8-ner
|
23 |
+
type: Rodrigo1771/symptemist-8-ner
|
24 |
config: SympTEMIST NER
|
25 |
split: validation
|
26 |
args: SympTEMIST NER
|
27 |
metrics:
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
+
value: 0.6832101372756072
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
+
value: 0.7082649151614668
|
34 |
- name: F1
|
35 |
type: f1
|
36 |
+
value: 0.6955119591507659
|
37 |
- name: Accuracy
|
38 |
type: accuracy
|
39 |
+
value: 0.9498058968847252
|
40 |
---
|
41 |
|
42 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
# output
|
46 |
|
47 |
+
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/symptemist-8-ner dataset.
|
48 |
It achieves the following results on the evaluation set:
|
49 |
+
- Loss: 0.3003
|
50 |
+
- Precision: 0.6832
|
51 |
+
- Recall: 0.7083
|
52 |
+
- F1: 0.6955
|
53 |
+
- Accuracy: 0.9498
|
54 |
|
55 |
## Model description
|
56 |
|
all_results.json
CHANGED
@@ -1,26 +1,26 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime": 5.
|
9 |
"eval_samples": 2519,
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second":
|
12 |
-
"predict_accuracy": 0.
|
13 |
-
"predict_f1": 0.
|
14 |
-
"predict_loss": 0.
|
15 |
-
"predict_precision": 0.
|
16 |
-
"predict_recall": 0.
|
17 |
-
"predict_runtime":
|
18 |
-
"predict_samples_per_second":
|
19 |
-
"predict_steps_per_second":
|
20 |
-
"total_flos":
|
21 |
-
"train_loss": 0.
|
22 |
-
"train_runtime":
|
23 |
-
"train_samples":
|
24 |
-
"train_samples_per_second":
|
25 |
-
"train_steps_per_second": 3.
|
26 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 9.976133651551313,
|
3 |
+
"eval_accuracy": 0.9498058968847252,
|
4 |
+
"eval_f1": 0.6955119591507659,
|
5 |
+
"eval_loss": 0.300260066986084,
|
6 |
+
"eval_precision": 0.6832101372756072,
|
7 |
+
"eval_recall": 0.7082649151614668,
|
8 |
+
"eval_runtime": 5.3532,
|
9 |
"eval_samples": 2519,
|
10 |
+
"eval_samples_per_second": 470.558,
|
11 |
+
"eval_steps_per_second": 58.843,
|
12 |
+
"predict_accuracy": 0.9465066682391328,
|
13 |
+
"predict_f1": 0.6871925091255355,
|
14 |
+
"predict_loss": 0.32003945112228394,
|
15 |
+
"predict_precision": 0.6778334376956794,
|
16 |
+
"predict_recall": 0.6968136466044416,
|
17 |
+
"predict_runtime": 9.1273,
|
18 |
+
"predict_samples_per_second": 443.395,
|
19 |
+
"predict_steps_per_second": 55.438,
|
20 |
+
"total_flos": 6479980841102670.0,
|
21 |
+
"train_loss": 0.03990328233493002,
|
22 |
+
"train_runtime": 605.7066,
|
23 |
+
"train_samples": 13389,
|
24 |
+
"train_samples_per_second": 221.048,
|
25 |
+
"train_steps_per_second": 3.451
|
26 |
}
|
eval_results.json
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss": 0.
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime": 5.
|
9 |
"eval_samples": 2519,
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second":
|
12 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 9.976133651551313,
|
3 |
+
"eval_accuracy": 0.9498058968847252,
|
4 |
+
"eval_f1": 0.6955119591507659,
|
5 |
+
"eval_loss": 0.300260066986084,
|
6 |
+
"eval_precision": 0.6832101372756072,
|
7 |
+
"eval_recall": 0.7082649151614668,
|
8 |
+
"eval_runtime": 5.3532,
|
9 |
"eval_samples": 2519,
|
10 |
+
"eval_samples_per_second": 470.558,
|
11 |
+
"eval_steps_per_second": 58.843
|
12 |
}
|
predict_results.json
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
{
|
2 |
-
"predict_accuracy": 0.
|
3 |
-
"predict_f1": 0.
|
4 |
-
"predict_loss": 0.
|
5 |
-
"predict_precision": 0.
|
6 |
-
"predict_recall": 0.
|
7 |
-
"predict_runtime":
|
8 |
-
"predict_samples_per_second":
|
9 |
-
"predict_steps_per_second":
|
10 |
}
|
|
|
1 |
{
|
2 |
+
"predict_accuracy": 0.9465066682391328,
|
3 |
+
"predict_f1": 0.6871925091255355,
|
4 |
+
"predict_loss": 0.32003945112228394,
|
5 |
+
"predict_precision": 0.6778334376956794,
|
6 |
+
"predict_recall": 0.6968136466044416,
|
7 |
+
"predict_runtime": 9.1273,
|
8 |
+
"predict_samples_per_second": 443.395,
|
9 |
+
"predict_steps_per_second": 55.438
|
10 |
}
|
predictions.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tb/events.out.tfevents.1725476139.a5c501872057.6105.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7c46d59ae0e93e011e758737f2c949894e6db42b7b574263d9a4123ea40093f
|
3 |
+
size 560
|
train.log
CHANGED
@@ -860,3 +860,51 @@ Training completed. Do not forget to share your model on huggingface.co/models =
|
|
860 |
{'eval_loss': 0.31253090500831604, 'eval_precision': 0.6711271230056614, 'eval_recall': 0.7137383689107827, 'eval_f1': 0.6917771883289126, 'eval_accuracy': 0.9491963168532838, 'eval_runtime': 5.6829, 'eval_samples_per_second': 443.26, 'eval_steps_per_second': 55.429, 'epoch': 9.98}
|
861 |
{'train_runtime': 605.7066, 'train_samples_per_second': 221.048, 'train_steps_per_second': 3.451, 'train_loss': 0.03990328233493002, 'epoch': 9.98}
|
862 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
863 |
0%| | 0/315 [00:00<?, ?it/s]
|
864 |
3%|▎ | 8/315 [00:00<00:03, 79.67it/s]
|
865 |
5%|▌ | 16/315 [00:00<00:03, 77.77it/s]
|
866 |
8%|▊ | 25/315 [00:00<00:03, 79.52it/s]
|
867 |
11%|█ | 34/315 [00:00<00:03, 81.49it/s]
|
868 |
14%|█▎ | 43/315 [00:00<00:03, 83.27it/s]
|
869 |
17%|█▋ | 52/315 [00:00<00:03, 81.72it/s]
|
870 |
19%|█▉ | 61/315 [00:00<00:03, 79.31it/s]
|
871 |
22%|██▏ | 69/315 [00:00<00:03, 78.47it/s]
|
872 |
25%|██▍ | 78/315 [00:00<00:02, 79.72it/s]
|
873 |
27%|██▋ | 86/315 [00:01<00:02, 78.27it/s]
|
874 |
30%|███ | 95/315 [00:01<00:02, 79.80it/s]
|
875 |
33%|███▎ | 103/315 [00:01<00:02, 78.32it/s]
|
876 |
36%|███▌ | 112/315 [00:01<00:02, 80.29it/s]
|
877 |
38%|███▊ | 121/315 [00:01<00:02, 79.55it/s]
|
878 |
41%|████ | 129/315 [00:01<00:02, 78.75it/s]
|
879 |
43%|████▎ | 137/315 [00:01<00:02, 78.82it/s]
|
880 |
46%|████▋ | 146/315 [00:01<00:02, 79.39it/s]
|
881 |
49%|████▉ | 155/315 [00:01<00:01, 81.02it/s]
|
882 |
52%|█████▏ | 164/315 [00:02<00:01, 80.30it/s]
|
883 |
55%|█████▍ | 173/315 [00:02<00:01, 80.93it/s]
|
884 |
58%|█████▊ | 182/315 [00:02<00:01, 80.02it/s]
|
885 |
61%|██████ | 191/315 [00:02<00:01, 80.51it/s]
|
886 |
63%|██████▎ | 200/315 [00:02<00:01, 79.29it/s]
|
887 |
66%|██████▌ | 208/315 [00:02<00:01, 78.49it/s]
|
888 |
69%|██████▉ | 217/315 [00:02<00:01, 80.52it/s]
|
889 |
72%|███████▏ | 226/315 [00:02<00:01, 82.31it/s]
|
890 |
75%|███████▍ | 235/315 [00:02<00:00, 83.74it/s]
|
891 |
77%|███████▋ | 244/315 [00:03<00:00, 81.82it/s]
|
892 |
80%|████████ | 253/315 [00:03<00:00, 81.65it/s]
|
893 |
83%|████████▎ | 262/315 [00:03<00:00, 82.45it/s]
|
894 |
86%|████████▌ | 271/315 [00:03<00:00, 81.81it/s]
|
895 |
89%|████████▉ | 280/315 [00:03<00:00, 82.55it/s]
|
896 |
92%|█████████▏| 289/315 [00:03<00:00, 80.62it/s]
|
897 |
95%|█████████▍| 298/315 [00:03<00:00, 80.79it/s]
|
898 |
97%|█████████▋| 307/315 [00:03<00:00, 81.16it/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
899 |
0%| | 0/506 [00:00<?, ?it/s]
|
900 |
2%|▏ | 10/506 [00:00<00:05, 94.71it/s]
|
901 |
4%|▍ | 20/506 [00:00<00:05, 81.40it/s]
|
902 |
6%|▌ | 29/506 [00:00<00:05, 82.81it/s]
|
903 |
8%|▊ | 38/506 [00:00<00:05, 81.92it/s]
|
904 |
9%|▉ | 47/506 [00:00<00:05, 82.66it/s]
|
905 |
11%|█ | 56/506 [00:00<00:05, 83.27it/s]
|
906 |
13%|█▎ | 65/506 [00:00<00:05, 82.44it/s]
|
907 |
15%|█▍ | 74/506 [00:00<00:05, 83.07it/s]
|
908 |
16%|█▋ | 83/506 [00:01<00:05, 78.19it/s]
|
909 |
18%|█▊ | 91/506 [00:01<00:05, 78.64it/s]
|
910 |
20%|█▉ | 99/506 [00:01<00:05, 78.19it/s]
|
911 |
21%|██▏ | 108/506 [00:01<00:05, 78.67it/s]
|
912 |
23%|██▎ | 117/506 [00:01<00:04, 80.48it/s]
|
913 |
25%|██▍ | 126/506 [00:01<00:04, 78.13it/s]
|
914 |
26%|██▋ | 134/506 [00:01<00:05, 72.17it/s]
|
915 |
28%|██▊ | 142/506 [00:01<00:04, 74.13it/s]
|
916 |
30%|██▉ | 151/506 [00:01<00:04, 76.31it/s]
|
917 |
31%|███▏ | 159/506 [00:02<00:04, 73.31it/s]
|
918 |
33%|███▎ | 167/506 [00:02<00:04, 73.99it/s]
|
919 |
35%|███▍ | 176/506 [00:02<00:04, 75.97it/s]
|
920 |
37%|███▋ | 185/506 [00:02<00:04, 78.12it/s]
|
921 |
38%|███▊ | 194/506 [00:02<00:03, 78.82it/s]
|
922 |
40%|████ | 203/506 [00:02<00:03, 80.17it/s]
|
923 |
42%|████▏ | 212/506 [00:02<00:03, 79.80it/s]
|
924 |
44%|████▎ | 221/506 [00:02<00:03, 79.76it/s]
|
925 |
45%|████▌ | 229/506 [00:02<00:03, 78.81it/s]
|
926 |
47%|████▋ | 237/506 [00:03<00:03, 78.04it/s]
|
927 |
49%|████▊ | 246/506 [00:03<00:03, 79.77it/s]
|
928 |
50%|█████ | 254/506 [00:03<00:03, 78.96it/s]
|
929 |
52%|█████▏ | 263/506 [00:03<00:03, 79.11it/s]
|
930 |
54%|█████▎ | 271/506 [00:03<00:03, 75.85it/s]
|
931 |
55%|█████▌ | 279/506 [00:03<00:03, 74.36it/s]
|
932 |
57%|█████▋ | 287/506 [00:03<00:03, 72.60it/s]
|
933 |
58%|█████▊ | 295/506 [00:03<00:02, 71.46it/s]
|
934 |
60%|█████▉ | 303/506 [00:03<00:02, 70.59it/s]
|
935 |
61%|██████▏ | 311/506 [00:04<00:02, 70.00it/s]
|
936 |
63%|██████▎ | 320/506 [00:04<00:02, 73.65it/s]
|
937 |
65%|██████▌ | 329/506 [00:04<00:02, 76.95it/s]
|
938 |
67%|██████▋ | 338/506 [00:04<00:02, 78.75it/s]
|
939 |
69%|██████▊ | 347/506 [00:04<00:01, 80.66it/s]
|
940 |
70%|███████ | 356/506 [00:04<00:01, 82.02it/s]
|
941 |
72%|███████▏ | 365/506 [00:04<00:01, 81.74it/s]
|
942 |
74%|███████▍ | 374/506 [00:04<00:01, 79.69it/s]
|
943 |
75%|███████▌ | 382/506 [00:04<00:01, 79.52it/s]
|
944 |
77%|███████▋ | 390/506 [00:05<00:01, 77.40it/s]
|
945 |
79%|███████▊ | 398/506 [00:05<00:01, 71.06it/s]
|
946 |
80%|████████ | 407/506 [00:05<00:01, 73.71it/s]
|
947 |
82%|████████▏ | 415/506 [00:05<00:01, 74.33it/s]
|
948 |
84%|████████▎ | 423/506 [00:05<00:01, 75.66it/s]
|
949 |
85%|████████▌ | 432/506 [00:05<00:00, 77.90it/s]
|
950 |
87%|████████▋ | 440/506 [00:05<00:00, 78.07it/s]
|
951 |
89%|████████▊ | 448/506 [00:05<00:00, 78.35it/s]
|
952 |
90%|█████████ | 457/506 [00:05<00:00, 79.22it/s]
|
953 |
92%|█████████▏| 466/506 [00:05<00:00, 80.30it/s]
|
954 |
94%|█████████▍| 475/506 [00:06<00:00, 81.34it/s]
|
955 |
96%|█████████▌| 484/506 [00:06<00:00, 77.78it/s]
|
956 |
97%|█████████▋| 492/506 [00:06<00:00, 74.43it/s]
|
957 |
99%|█████████▉| 500/506 [00:06<00:00, 72.82it/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
860 |
{'eval_loss': 0.31253090500831604, 'eval_precision': 0.6711271230056614, 'eval_recall': 0.7137383689107827, 'eval_f1': 0.6917771883289126, 'eval_accuracy': 0.9491963168532838, 'eval_runtime': 5.6829, 'eval_samples_per_second': 443.26, 'eval_steps_per_second': 55.429, 'epoch': 9.98}
|
861 |
{'train_runtime': 605.7066, 'train_samples_per_second': 221.048, 'train_steps_per_second': 3.451, 'train_loss': 0.03990328233493002, 'epoch': 9.98}
|
862 |
|
863 |
+
***** train metrics *****
|
864 |
+
epoch = 9.9761
|
865 |
+
total_flos = 6034952GF
|
866 |
+
train_loss = 0.0399
|
867 |
+
train_runtime = 0:10:05.70
|
868 |
+
train_samples = 13389
|
869 |
+
train_samples_per_second = 221.048
|
870 |
+
train_steps_per_second = 3.451
|
871 |
+
09/04/2024 18:55:34 - INFO - __main__ - *** Evaluate ***
|
872 |
+
[INFO|trainer.py:811] 2024-09-04 18:55:34,018 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
|
873 |
+
[INFO|trainer.py:3819] 2024-09-04 18:55:34,020 >>
|
874 |
+
***** Running Evaluation *****
|
875 |
+
[INFO|trainer.py:3821] 2024-09-04 18:55:34,020 >> Num examples = 2519
|
876 |
+
[INFO|trainer.py:3824] 2024-09-04 18:55:34,020 >> Batch size = 8
|
877 |
+
|
878 |
0%| | 0/315 [00:00<?, ?it/s]
|
879 |
3%|▎ | 8/315 [00:00<00:03, 79.67it/s]
|
880 |
5%|▌ | 16/315 [00:00<00:03, 77.77it/s]
|
881 |
8%|▊ | 25/315 [00:00<00:03, 79.52it/s]
|
882 |
11%|█ | 34/315 [00:00<00:03, 81.49it/s]
|
883 |
14%|█▎ | 43/315 [00:00<00:03, 83.27it/s]
|
884 |
17%|█▋ | 52/315 [00:00<00:03, 81.72it/s]
|
885 |
19%|█▉ | 61/315 [00:00<00:03, 79.31it/s]
|
886 |
22%|██▏ | 69/315 [00:00<00:03, 78.47it/s]
|
887 |
25%|██▍ | 78/315 [00:00<00:02, 79.72it/s]
|
888 |
27%|██▋ | 86/315 [00:01<00:02, 78.27it/s]
|
889 |
30%|███ | 95/315 [00:01<00:02, 79.80it/s]
|
890 |
33%|███▎ | 103/315 [00:01<00:02, 78.32it/s]
|
891 |
36%|███▌ | 112/315 [00:01<00:02, 80.29it/s]
|
892 |
38%|███▊ | 121/315 [00:01<00:02, 79.55it/s]
|
893 |
41%|████ | 129/315 [00:01<00:02, 78.75it/s]
|
894 |
43%|████▎ | 137/315 [00:01<00:02, 78.82it/s]
|
895 |
46%|████▋ | 146/315 [00:01<00:02, 79.39it/s]
|
896 |
49%|████▉ | 155/315 [00:01<00:01, 81.02it/s]
|
897 |
52%|█████▏ | 164/315 [00:02<00:01, 80.30it/s]
|
898 |
55%|█████▍ | 173/315 [00:02<00:01, 80.93it/s]
|
899 |
58%|█████▊ | 182/315 [00:02<00:01, 80.02it/s]
|
900 |
61%|██████ | 191/315 [00:02<00:01, 80.51it/s]
|
901 |
63%|██████▎ | 200/315 [00:02<00:01, 79.29it/s]
|
902 |
66%|██████▌ | 208/315 [00:02<00:01, 78.49it/s]
|
903 |
69%|██████▉ | 217/315 [00:02<00:01, 80.52it/s]
|
904 |
72%|███████▏ | 226/315 [00:02<00:01, 82.31it/s]
|
905 |
75%|███████▍ | 235/315 [00:02<00:00, 83.74it/s]
|
906 |
77%|███████▋ | 244/315 [00:03<00:00, 81.82it/s]
|
907 |
80%|████████ | 253/315 [00:03<00:00, 81.65it/s]
|
908 |
83%|████████▎ | 262/315 [00:03<00:00, 82.45it/s]
|
909 |
86%|████████▌ | 271/315 [00:03<00:00, 81.81it/s]
|
910 |
89%|████████▉ | 280/315 [00:03<00:00, 82.55it/s]
|
911 |
92%|█████████▏| 289/315 [00:03<00:00, 80.62it/s]
|
912 |
95%|█████████▍| 298/315 [00:03<00:00, 80.79it/s]
|
913 |
97%|█████████▋| 307/315 [00:03<00:00, 81.16it/s]
|
914 |
+
***** eval metrics *****
|
915 |
+
epoch = 9.9761
|
916 |
+
eval_accuracy = 0.9498
|
917 |
+
eval_f1 = 0.6955
|
918 |
+
eval_loss = 0.3003
|
919 |
+
eval_precision = 0.6832
|
920 |
+
eval_recall = 0.7083
|
921 |
+
eval_runtime = 0:00:05.35
|
922 |
+
eval_samples = 2519
|
923 |
+
eval_samples_per_second = 470.558
|
924 |
+
eval_steps_per_second = 58.843
|
925 |
+
09/04/2024 18:55:39 - INFO - __main__ - *** Predict ***
|
926 |
+
[INFO|trainer.py:811] 2024-09-04 18:55:39,376 >> The following columns in the test set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: ner_tags, id, tokens. If ner_tags, id, tokens are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
|
927 |
+
[INFO|trainer.py:3819] 2024-09-04 18:55:39,378 >>
|
928 |
+
***** Running Prediction *****
|
929 |
+
[INFO|trainer.py:3821] 2024-09-04 18:55:39,378 >> Num examples = 4047
|
930 |
+
[INFO|trainer.py:3824] 2024-09-04 18:55:39,378 >> Batch size = 8
|
931 |
+
|
932 |
0%| | 0/506 [00:00<?, ?it/s]
|
933 |
2%|▏ | 10/506 [00:00<00:05, 94.71it/s]
|
934 |
4%|▍ | 20/506 [00:00<00:05, 81.40it/s]
|
935 |
6%|▌ | 29/506 [00:00<00:05, 82.81it/s]
|
936 |
8%|▊ | 38/506 [00:00<00:05, 81.92it/s]
|
937 |
9%|▉ | 47/506 [00:00<00:05, 82.66it/s]
|
938 |
11%|█ | 56/506 [00:00<00:05, 83.27it/s]
|
939 |
13%|█▎ | 65/506 [00:00<00:05, 82.44it/s]
|
940 |
15%|█▍ | 74/506 [00:00<00:05, 83.07it/s]
|
941 |
16%|█▋ | 83/506 [00:01<00:05, 78.19it/s]
|
942 |
18%|█▊ | 91/506 [00:01<00:05, 78.64it/s]
|
943 |
20%|█▉ | 99/506 [00:01<00:05, 78.19it/s]
|
944 |
21%|██▏ | 108/506 [00:01<00:05, 78.67it/s]
|
945 |
23%|██▎ | 117/506 [00:01<00:04, 80.48it/s]
|
946 |
25%|██▍ | 126/506 [00:01<00:04, 78.13it/s]
|
947 |
26%|██▋ | 134/506 [00:01<00:05, 72.17it/s]
|
948 |
28%|██▊ | 142/506 [00:01<00:04, 74.13it/s]
|
949 |
30%|██▉ | 151/506 [00:01<00:04, 76.31it/s]
|
950 |
31%|███▏ | 159/506 [00:02<00:04, 73.31it/s]
|
951 |
33%|███▎ | 167/506 [00:02<00:04, 73.99it/s]
|
952 |
35%|███▍ | 176/506 [00:02<00:04, 75.97it/s]
|
953 |
37%|███▋ | 185/506 [00:02<00:04, 78.12it/s]
|
954 |
38%|███▊ | 194/506 [00:02<00:03, 78.82it/s]
|
955 |
40%|████ | 203/506 [00:02<00:03, 80.17it/s]
|
956 |
42%|████▏ | 212/506 [00:02<00:03, 79.80it/s]
|
957 |
44%|████▎ | 221/506 [00:02<00:03, 79.76it/s]
|
958 |
45%|████▌ | 229/506 [00:02<00:03, 78.81it/s]
|
959 |
47%|████▋ | 237/506 [00:03<00:03, 78.04it/s]
|
960 |
49%|████▊ | 246/506 [00:03<00:03, 79.77it/s]
|
961 |
50%|█████ | 254/506 [00:03<00:03, 78.96it/s]
|
962 |
52%|█████▏ | 263/506 [00:03<00:03, 79.11it/s]
|
963 |
54%|█████▎ | 271/506 [00:03<00:03, 75.85it/s]
|
964 |
55%|█████▌ | 279/506 [00:03<00:03, 74.36it/s]
|
965 |
57%|█████▋ | 287/506 [00:03<00:03, 72.60it/s]
|
966 |
58%|█████▊ | 295/506 [00:03<00:02, 71.46it/s]
|
967 |
60%|█████▉ | 303/506 [00:03<00:02, 70.59it/s]
|
968 |
61%|██████▏ | 311/506 [00:04<00:02, 70.00it/s]
|
969 |
63%|██████▎ | 320/506 [00:04<00:02, 73.65it/s]
|
970 |
65%|██████▌ | 329/506 [00:04<00:02, 76.95it/s]
|
971 |
67%|██████▋ | 338/506 [00:04<00:02, 78.75it/s]
|
972 |
69%|██████▊ | 347/506 [00:04<00:01, 80.66it/s]
|
973 |
70%|███████ | 356/506 [00:04<00:01, 82.02it/s]
|
974 |
72%|███████▏ | 365/506 [00:04<00:01, 81.74it/s]
|
975 |
74%|███████▍ | 374/506 [00:04<00:01, 79.69it/s]
|
976 |
75%|███████▌ | 382/506 [00:04<00:01, 79.52it/s]
|
977 |
77%|███████▋ | 390/506 [00:05<00:01, 77.40it/s]
|
978 |
79%|███████▊ | 398/506 [00:05<00:01, 71.06it/s]
|
979 |
80%|████████ | 407/506 [00:05<00:01, 73.71it/s]
|
980 |
82%|████████▏ | 415/506 [00:05<00:01, 74.33it/s]
|
981 |
84%|████████▎ | 423/506 [00:05<00:01, 75.66it/s]
|
982 |
85%|████████▌ | 432/506 [00:05<00:00, 77.90it/s]
|
983 |
87%|████████▋ | 440/506 [00:05<00:00, 78.07it/s]
|
984 |
89%|████████▊ | 448/506 [00:05<00:00, 78.35it/s]
|
985 |
90%|█████████ | 457/506 [00:05<00:00, 79.22it/s]
|
986 |
92%|█████████▏| 466/506 [00:05<00:00, 80.30it/s]
|
987 |
94%|█████████▍| 475/506 [00:06<00:00, 81.34it/s]
|
988 |
96%|█████████▌| 484/506 [00:06<00:00, 77.78it/s]
|
989 |
97%|█████████▋| 492/506 [00:06<00:00, 74.43it/s]
|
990 |
99%|█████████▉| 500/506 [00:06<00:00, 72.82it/s]
|
991 |
+
[INFO|trainer.py:3503] 2024-09-04 18:55:48,667 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
|
992 |
+
[INFO|configuration_utils.py:472] 2024-09-04 18:55:48,669 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
|
993 |
+
[INFO|modeling_utils.py:2799] 2024-09-04 18:55:50,042 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
|
994 |
+
[INFO|tokenization_utils_base.py:2684] 2024-09-04 18:55:50,043 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
|
995 |
+
[INFO|tokenization_utils_base.py:2693] 2024-09-04 18:55:50,043 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
|
996 |
+
***** predict metrics *****
|
997 |
+
predict_accuracy = 0.9465
|
998 |
+
predict_f1 = 0.6872
|
999 |
+
predict_loss = 0.32
|
1000 |
+
predict_precision = 0.6778
|
1001 |
+
predict_recall = 0.6968
|
1002 |
+
predict_runtime = 0:00:09.12
|
1003 |
+
predict_samples_per_second = 443.395
|
1004 |
+
predict_steps_per_second = 55.438
|
1005 |
+
|
train_results.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
-
"epoch":
|
3 |
-
"total_flos":
|
4 |
-
"train_loss": 0.
|
5 |
-
"train_runtime":
|
6 |
-
"train_samples":
|
7 |
-
"train_samples_per_second":
|
8 |
-
"train_steps_per_second": 3.
|
9 |
}
|
|
|
1 |
{
|
2 |
+
"epoch": 9.976133651551313,
|
3 |
+
"total_flos": 6479980841102670.0,
|
4 |
+
"train_loss": 0.03990328233493002,
|
5 |
+
"train_runtime": 605.7066,
|
6 |
+
"train_samples": 13389,
|
7 |
+
"train_samples_per_second": 221.048,
|
8 |
+
"train_steps_per_second": 3.451
|
9 |
}
|
trainer_state.json
CHANGED
@@ -1,173 +1,173 @@
|
|
1 |
{
|
2 |
-
"best_metric": 0.
|
3 |
-
"best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-
|
4 |
-
"epoch":
|
5 |
"eval_steps": 500,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
-
"epoch":
|
13 |
-
"eval_accuracy": 0.
|
14 |
-
"eval_f1": 0.
|
15 |
-
"eval_loss": 0.
|
16 |
-
"eval_precision": 0.
|
17 |
-
"eval_recall": 0.
|
18 |
-
"eval_runtime": 5.
|
19 |
-
"eval_samples_per_second":
|
20 |
-
"eval_steps_per_second":
|
21 |
-
"step":
|
22 |
},
|
23 |
{
|
24 |
"epoch": 2.0,
|
25 |
-
"eval_accuracy": 0.
|
26 |
-
"eval_f1": 0.
|
27 |
-
"eval_loss": 0.
|
28 |
-
"eval_precision": 0.
|
29 |
-
"eval_recall": 0.
|
30 |
-
"eval_runtime": 5.
|
31 |
-
"eval_samples_per_second":
|
32 |
-
"eval_steps_per_second":
|
33 |
-
"step":
|
34 |
},
|
35 |
{
|
36 |
-
"epoch": 2.
|
37 |
-
"grad_norm":
|
38 |
-
"learning_rate": 3.
|
39 |
-
"loss": 0.
|
40 |
"step": 500
|
41 |
},
|
42 |
{
|
43 |
-
"epoch":
|
44 |
-
"eval_accuracy": 0.
|
45 |
-
"eval_f1": 0.
|
46 |
-
"eval_loss": 0.
|
47 |
-
"eval_precision": 0.
|
48 |
"eval_recall": 0.6978653530377669,
|
49 |
-
"eval_runtime": 5.
|
50 |
-
"eval_samples_per_second":
|
51 |
-
"eval_steps_per_second": 57.
|
52 |
-
"step":
|
53 |
},
|
54 |
{
|
55 |
"epoch": 4.0,
|
56 |
-
"eval_accuracy": 0.
|
57 |
-
"eval_f1": 0.
|
58 |
-
"eval_loss": 0.
|
59 |
-
"eval_precision": 0.
|
60 |
-
"eval_recall": 0.
|
61 |
-
"eval_runtime": 5.
|
62 |
-
"eval_samples_per_second":
|
63 |
-
"eval_steps_per_second":
|
64 |
-
"step":
|
65 |
},
|
66 |
{
|
67 |
-
"epoch": 4.
|
68 |
-
"grad_norm": 0.
|
69 |
-
"learning_rate": 2.
|
70 |
-
"loss": 0.
|
71 |
"step": 1000
|
72 |
},
|
73 |
{
|
74 |
-
"epoch":
|
75 |
-
"eval_accuracy": 0.
|
76 |
-
"eval_f1": 0.
|
77 |
-
"eval_loss": 0.
|
78 |
-
"eval_precision": 0.
|
79 |
-
"eval_recall": 0.
|
80 |
-
"eval_runtime": 5.
|
81 |
-
"eval_samples_per_second":
|
82 |
-
"eval_steps_per_second":
|
83 |
-
"step":
|
84 |
},
|
85 |
{
|
86 |
"epoch": 6.0,
|
87 |
-
"eval_accuracy": 0.
|
88 |
-
"eval_f1": 0.
|
89 |
-
"eval_loss": 0.
|
90 |
-
"eval_precision": 0.
|
91 |
-
"eval_recall": 0.
|
92 |
-
"eval_runtime": 5.
|
93 |
-
"eval_samples_per_second":
|
94 |
-
"eval_steps_per_second":
|
95 |
-
"step":
|
96 |
},
|
97 |
{
|
98 |
-
"epoch": 6.
|
99 |
-
"
|
100 |
-
"
|
101 |
-
"
|
102 |
-
"
|
|
|
|
|
|
|
|
|
|
|
103 |
},
|
104 |
{
|
105 |
-
"epoch": 7.
|
106 |
-
"
|
107 |
-
"
|
108 |
-
"
|
109 |
-
"
|
110 |
-
"eval_recall": 0.7077175697865353,
|
111 |
-
"eval_runtime": 5.5771,
|
112 |
-
"eval_samples_per_second": 451.669,
|
113 |
-
"eval_steps_per_second": 56.481,
|
114 |
-
"step": 1736
|
115 |
},
|
116 |
{
|
117 |
"epoch": 8.0,
|
118 |
-
"eval_accuracy": 0.
|
119 |
-
"eval_f1": 0.
|
120 |
-
"eval_loss": 0.
|
121 |
-
"eval_precision": 0.
|
122 |
-
"eval_recall": 0.
|
123 |
-
"eval_runtime": 5.
|
124 |
-
"eval_samples_per_second":
|
125 |
-
"eval_steps_per_second":
|
126 |
-
"step":
|
127 |
},
|
128 |
{
|
129 |
-
"epoch": 8.
|
130 |
-
"
|
131 |
-
"
|
132 |
-
"
|
133 |
-
"
|
|
|
|
|
|
|
|
|
|
|
134 |
},
|
135 |
{
|
136 |
-
"epoch": 9.
|
137 |
-
"
|
138 |
-
"
|
139 |
-
"
|
140 |
-
"
|
141 |
-
"eval_recall": 0.715927750410509,
|
142 |
-
"eval_runtime": 5.4512,
|
143 |
-
"eval_samples_per_second": 462.102,
|
144 |
-
"eval_steps_per_second": 57.786,
|
145 |
-
"step": 2232
|
146 |
},
|
147 |
{
|
148 |
-
"epoch":
|
149 |
-
"eval_accuracy": 0.
|
150 |
-
"eval_f1": 0.
|
151 |
-
"eval_loss": 0.
|
152 |
-
"eval_precision": 0.
|
153 |
-
"eval_recall": 0.
|
154 |
-
"eval_runtime": 5.
|
155 |
-
"eval_samples_per_second":
|
156 |
-
"eval_steps_per_second":
|
157 |
-
"step":
|
158 |
},
|
159 |
{
|
160 |
-
"epoch":
|
161 |
-
"step":
|
162 |
-
"total_flos":
|
163 |
-
"train_loss": 0.
|
164 |
-
"train_runtime":
|
165 |
-
"train_samples_per_second":
|
166 |
-
"train_steps_per_second": 3.
|
167 |
}
|
168 |
],
|
169 |
"logging_steps": 500,
|
170 |
-
"max_steps":
|
171 |
"num_input_tokens_seen": 0,
|
172 |
"num_train_epochs": 10,
|
173 |
"save_steps": 500,
|
@@ -183,7 +183,7 @@
|
|
183 |
"attributes": {}
|
184 |
}
|
185 |
},
|
186 |
-
"total_flos":
|
187 |
"train_batch_size": 32,
|
188 |
"trial_name": null,
|
189 |
"trial_params": null
|
|
|
1 |
{
|
2 |
+
"best_metric": 0.6955119591507659,
|
3 |
+
"best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-1676",
|
4 |
+
"epoch": 9.976133651551313,
|
5 |
"eval_steps": 500,
|
6 |
+
"global_step": 2090,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
10 |
"log_history": [
|
11 |
{
|
12 |
+
"epoch": 0.9976133651551312,
|
13 |
+
"eval_accuracy": 0.9457473772017069,
|
14 |
+
"eval_f1": 0.6225502672435734,
|
15 |
+
"eval_loss": 0.15105590224266052,
|
16 |
+
"eval_precision": 0.5818268315889629,
|
17 |
+
"eval_recall": 0.6694033935413246,
|
18 |
+
"eval_runtime": 5.6572,
|
19 |
+
"eval_samples_per_second": 445.271,
|
20 |
+
"eval_steps_per_second": 55.681,
|
21 |
+
"step": 209
|
22 |
},
|
23 |
{
|
24 |
"epoch": 2.0,
|
25 |
+
"eval_accuracy": 0.9464852898713465,
|
26 |
+
"eval_f1": 0.653414882772681,
|
27 |
+
"eval_loss": 0.1794203370809555,
|
28 |
+
"eval_precision": 0.6113495469718646,
|
29 |
+
"eval_recall": 0.7016967706622879,
|
30 |
+
"eval_runtime": 5.5563,
|
31 |
+
"eval_samples_per_second": 453.36,
|
32 |
+
"eval_steps_per_second": 56.692,
|
33 |
+
"step": 419
|
34 |
},
|
35 |
{
|
36 |
+
"epoch": 2.386634844868735,
|
37 |
+
"grad_norm": 1.321442723274231,
|
38 |
+
"learning_rate": 3.8038277511961725e-05,
|
39 |
+
"loss": 0.1282,
|
40 |
"step": 500
|
41 |
},
|
42 |
{
|
43 |
+
"epoch": 2.9976133651551313,
|
44 |
+
"eval_accuracy": 0.9470146620039142,
|
45 |
+
"eval_f1": 0.6769312450225644,
|
46 |
+
"eval_loss": 0.21023894846439362,
|
47 |
+
"eval_precision": 0.6572164948453608,
|
48 |
"eval_recall": 0.6978653530377669,
|
49 |
+
"eval_runtime": 5.4361,
|
50 |
+
"eval_samples_per_second": 463.385,
|
51 |
+
"eval_steps_per_second": 57.946,
|
52 |
+
"step": 628
|
53 |
},
|
54 |
{
|
55 |
"epoch": 4.0,
|
56 |
+
"eval_accuracy": 0.9489075684173377,
|
57 |
+
"eval_f1": 0.6789039638201649,
|
58 |
+
"eval_loss": 0.23289668560028076,
|
59 |
+
"eval_precision": 0.660455486542443,
|
60 |
+
"eval_recall": 0.6984126984126984,
|
61 |
+
"eval_runtime": 5.4098,
|
62 |
+
"eval_samples_per_second": 465.634,
|
63 |
+
"eval_steps_per_second": 58.227,
|
64 |
+
"step": 838
|
65 |
},
|
66 |
{
|
67 |
+
"epoch": 4.77326968973747,
|
68 |
+
"grad_norm": 0.4721558690071106,
|
69 |
+
"learning_rate": 2.6076555023923443e-05,
|
70 |
+
"loss": 0.0255,
|
71 |
"step": 1000
|
72 |
},
|
73 |
{
|
74 |
+
"epoch": 4.997613365155131,
|
75 |
+
"eval_accuracy": 0.9490679842150855,
|
76 |
+
"eval_f1": 0.6805555555555556,
|
77 |
+
"eval_loss": 0.2591019570827484,
|
78 |
+
"eval_precision": 0.6645800730307773,
|
79 |
+
"eval_recall": 0.6973180076628352,
|
80 |
+
"eval_runtime": 5.2875,
|
81 |
+
"eval_samples_per_second": 476.407,
|
82 |
+
"eval_steps_per_second": 59.575,
|
83 |
+
"step": 1047
|
84 |
},
|
85 |
{
|
86 |
"epoch": 6.0,
|
87 |
+
"eval_accuracy": 0.9491481921139594,
|
88 |
+
"eval_f1": 0.6778487752928647,
|
89 |
+
"eval_loss": 0.27368706464767456,
|
90 |
+
"eval_precision": 0.6599274235355106,
|
91 |
+
"eval_recall": 0.6967706622879036,
|
92 |
+
"eval_runtime": 5.2916,
|
93 |
+
"eval_samples_per_second": 476.037,
|
94 |
+
"eval_steps_per_second": 59.528,
|
95 |
+
"step": 1257
|
96 |
},
|
97 |
{
|
98 |
+
"epoch": 6.997613365155131,
|
99 |
+
"eval_accuracy": 0.949244441592608,
|
100 |
+
"eval_f1": 0.6884462151394423,
|
101 |
+
"eval_loss": 0.28756192326545715,
|
102 |
+
"eval_precision": 0.6687306501547987,
|
103 |
+
"eval_recall": 0.7093596059113301,
|
104 |
+
"eval_runtime": 5.2943,
|
105 |
+
"eval_samples_per_second": 475.796,
|
106 |
+
"eval_steps_per_second": 59.498,
|
107 |
+
"step": 1466
|
108 |
},
|
109 |
{
|
110 |
+
"epoch": 7.159904534606206,
|
111 |
+
"grad_norm": 0.6170095205307007,
|
112 |
+
"learning_rate": 1.4114832535885167e-05,
|
113 |
+
"loss": 0.0085,
|
114 |
+
"step": 1500
|
|
|
|
|
|
|
|
|
|
|
115 |
},
|
116 |
{
|
117 |
"epoch": 8.0,
|
118 |
+
"eval_accuracy": 0.9498058968847252,
|
119 |
+
"eval_f1": 0.6955119591507659,
|
120 |
+
"eval_loss": 0.300260066986084,
|
121 |
+
"eval_precision": 0.6832101372756072,
|
122 |
+
"eval_recall": 0.7082649151614668,
|
123 |
+
"eval_runtime": 5.5232,
|
124 |
+
"eval_samples_per_second": 456.079,
|
125 |
+
"eval_steps_per_second": 57.032,
|
126 |
+
"step": 1676
|
127 |
},
|
128 |
{
|
129 |
+
"epoch": 8.99761336515513,
|
130 |
+
"eval_accuracy": 0.9491802752735089,
|
131 |
+
"eval_f1": 0.6925720327782183,
|
132 |
+
"eval_loss": 0.30722716450691223,
|
133 |
+
"eval_precision": 0.6697341513292433,
|
134 |
+
"eval_recall": 0.7170224411603722,
|
135 |
+
"eval_runtime": 5.6022,
|
136 |
+
"eval_samples_per_second": 449.646,
|
137 |
+
"eval_steps_per_second": 56.228,
|
138 |
+
"step": 1885
|
139 |
},
|
140 |
{
|
141 |
+
"epoch": 9.54653937947494,
|
142 |
+
"grad_norm": 0.3939690589904785,
|
143 |
+
"learning_rate": 2.15311004784689e-06,
|
144 |
+
"loss": 0.004,
|
145 |
+
"step": 2000
|
|
|
|
|
|
|
|
|
|
|
146 |
},
|
147 |
{
|
148 |
+
"epoch": 9.976133651551313,
|
149 |
+
"eval_accuracy": 0.9491963168532838,
|
150 |
+
"eval_f1": 0.6917771883289126,
|
151 |
+
"eval_loss": 0.31253090500831604,
|
152 |
+
"eval_precision": 0.6711271230056614,
|
153 |
+
"eval_recall": 0.7137383689107827,
|
154 |
+
"eval_runtime": 5.6829,
|
155 |
+
"eval_samples_per_second": 443.26,
|
156 |
+
"eval_steps_per_second": 55.429,
|
157 |
+
"step": 2090
|
158 |
},
|
159 |
{
|
160 |
+
"epoch": 9.976133651551313,
|
161 |
+
"step": 2090,
|
162 |
+
"total_flos": 6479980841102670.0,
|
163 |
+
"train_loss": 0.03990328233493002,
|
164 |
+
"train_runtime": 605.7066,
|
165 |
+
"train_samples_per_second": 221.048,
|
166 |
+
"train_steps_per_second": 3.451
|
167 |
}
|
168 |
],
|
169 |
"logging_steps": 500,
|
170 |
+
"max_steps": 2090,
|
171 |
"num_input_tokens_seen": 0,
|
172 |
"num_train_epochs": 10,
|
173 |
"save_steps": 500,
|
|
|
183 |
"attributes": {}
|
184 |
}
|
185 |
},
|
186 |
+
"total_flos": 6479980841102670.0,
|
187 |
"train_batch_size": 32,
|
188 |
"trial_name": null,
|
189 |
"trial_params": null
|