--- library_name: transformers license: apache-2.0 base_model: PlanTL-GOB-ES/bsc-bio-ehr-es tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/symptemist-8-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/symptemist-8-ner type: Rodrigo1771/symptemist-8-ner config: SympTEMIST NER split: validation args: SympTEMIST NER metrics: - name: Precision type: precision value: 0.6832101372756072 - name: Recall type: recall value: 0.7082649151614668 - name: F1 type: f1 value: 0.6955119591507659 - name: Accuracy type: accuracy value: 0.9498058968847252 --- # output This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/symptemist-8-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.3003 - Precision: 0.6832 - Recall: 0.7083 - F1: 0.6955 - Accuracy: 0.9498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9976 | 209 | 0.1511 | 0.5818 | 0.6694 | 0.6226 | 0.9457 | | No log | 2.0 | 419 | 0.1794 | 0.6113 | 0.7017 | 0.6534 | 0.9465 | | 0.1282 | 2.9976 | 628 | 0.2102 | 0.6572 | 0.6979 | 0.6769 | 0.9470 | | 0.1282 | 4.0 | 838 | 0.2329 | 0.6605 | 0.6984 | 0.6789 | 0.9489 | | 0.0255 | 4.9976 | 1047 | 0.2591 | 0.6646 | 0.6973 | 0.6806 | 0.9491 | | 0.0255 | 6.0 | 1257 | 0.2737 | 0.6599 | 0.6968 | 0.6778 | 0.9491 | | 0.0255 | 6.9976 | 1466 | 0.2876 | 0.6687 | 0.7094 | 0.6884 | 0.9492 | | 0.0085 | 8.0 | 1676 | 0.3003 | 0.6832 | 0.7083 | 0.6955 | 0.9498 | | 0.0085 | 8.9976 | 1885 | 0.3072 | 0.6697 | 0.7170 | 0.6926 | 0.9492 | | 0.004 | 9.9761 | 2090 | 0.3125 | 0.6711 | 0.7137 | 0.6918 | 0.9492 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1