Rolv-Arild commited on
Commit
62dd410
·
1 Parent(s): 3228b61

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -181
README.md CHANGED
@@ -1,181 +0,0 @@
1
- ---
2
- language:
3
- - sv-SE
4
- license: apache-2.0
5
- tags:
6
- - automatic-speech-recognition
7
- - mozilla-foundation/common_voice_7_0
8
- - generated_from_trainer
9
- - sv
10
- - robust-speech-event
11
- - model_for_talk
12
- datasets:
13
- - mozilla-foundation/common_voice_7_0
14
- model-index:
15
- - name: XLS-R-300M - Swedish
16
- results:
17
- - task:
18
- name: Automatic Speech Recognition
19
- type: automatic-speech-recognition
20
- dataset:
21
- name: Common Voice 7
22
- type: mozilla-foundation/common_voice_7_0
23
- args: sv-SE
24
- metrics:
25
- - name: Test WER
26
- type: wer
27
- value: 18.85
28
- - name: Test CER
29
- type: cer
30
- value: 6.6
31
- - task:
32
- name: Automatic Speech Recognition
33
- type: automatic-speech-recognition
34
- dataset:
35
- name: Robust Speech Event - Dev Data
36
- type: speech-recognition-community-v2/dev_data
37
- args: sv
38
- metrics:
39
- - name: Test WER
40
- type: wer
41
- value: 27.01
42
- - name: Test CER
43
- type: cer
44
- value: 13.14
45
- ---
46
-
47
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
48
- should probably proofread and complete it, then remove this comment. -->
49
-
50
- # XLS-R-300m-SV
51
-
52
- This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - SV-SE dataset.
53
- It achieves the following results on the evaluation set:
54
- - Loss: 0.3171
55
- - Wer: 0.2730
56
-
57
- ## Model description
58
-
59
- More information needed
60
-
61
- ## Intended uses & limitations
62
-
63
- More information needed
64
-
65
- ## Training and evaluation data
66
-
67
- More information needed
68
-
69
- ## Training procedure
70
-
71
- ### Training hyperparameters
72
-
73
- The following hyperparameters were used during training:
74
- - learning_rate: 7.5e-05
75
- - train_batch_size: 8
76
- - eval_batch_size: 8
77
- - seed: 42
78
- - gradient_accumulation_steps: 4
79
- - total_train_batch_size: 32
80
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
81
- - lr_scheduler_type: linear
82
- - lr_scheduler_warmup_steps: 2000
83
- - num_epochs: 50.0
84
- - mixed_precision_training: Native AMP
85
-
86
- ### Training results
87
-
88
- | Training Loss | Epoch | Step | Validation Loss | Wer |
89
- |:-------------:|:-----:|:-----:|:---------------:|:------:|
90
- | 3.3349 | 1.45 | 500 | 3.2858 | 1.0 |
91
- | 2.9298 | 2.91 | 1000 | 2.9225 | 1.0000 |
92
- | 2.0839 | 4.36 | 1500 | 1.1546 | 0.8295 |
93
- | 1.7093 | 5.81 | 2000 | 0.6827 | 0.5701 |
94
- | 1.5855 | 7.27 | 2500 | 0.5597 | 0.4947 |
95
- | 1.4831 | 8.72 | 3000 | 0.4923 | 0.4527 |
96
- | 1.4416 | 10.17 | 3500 | 0.4670 | 0.4270 |
97
- | 1.3848 | 11.63 | 4000 | 0.4341 | 0.3980 |
98
- | 1.3749 | 13.08 | 4500 | 0.4203 | 0.4011 |
99
- | 1.3311 | 14.53 | 5000 | 0.4310 | 0.3961 |
100
- | 1.317 | 15.99 | 5500 | 0.3898 | 0.4322 |
101
- | 1.2799 | 17.44 | 6000 | 0.3806 | 0.3572 |
102
- | 1.2771 | 18.89 | 6500 | 0.3828 | 0.3427 |
103
- | 1.2451 | 20.35 | 7000 | 0.3702 | 0.3359 |
104
- | 1.2182 | 21.8 | 7500 | 0.3685 | 0.3270 |
105
- | 1.2152 | 23.26 | 8000 | 0.3650 | 0.3308 |
106
- | 1.1837 | 24.71 | 8500 | 0.3568 | 0.3187 |
107
- | 1.1721 | 26.16 | 9000 | 0.3659 | 0.3249 |
108
- | 1.1764 | 27.61 | 9500 | 0.3547 | 0.3145 |
109
- | 1.1606 | 29.07 | 10000 | 0.3514 | 0.3104 |
110
- | 1.1431 | 30.52 | 10500 | 0.3469 | 0.3062 |
111
- | 1.1047 | 31.97 | 11000 | 0.3313 | 0.2979 |
112
- | 1.1315 | 33.43 | 11500 | 0.3298 | 0.2992 |
113
- | 1.1022 | 34.88 | 12000 | 0.3296 | 0.2973 |
114
- | 1.0935 | 36.34 | 12500 | 0.3278 | 0.2926 |
115
- | 1.0676 | 37.79 | 13000 | 0.3208 | 0.2868 |
116
- | 1.0571 | 39.24 | 13500 | 0.3322 | 0.2885 |
117
- | 1.0536 | 40.7 | 14000 | 0.3245 | 0.2831 |
118
- | 1.0525 | 42.15 | 14500 | 0.3285 | 0.2826 |
119
- | 1.0464 | 43.6 | 15000 | 0.3223 | 0.2796 |
120
- | 1.0415 | 45.06 | 15500 | 0.3166 | 0.2774 |
121
- | 1.0356 | 46.51 | 16000 | 0.3177 | 0.2746 |
122
- | 1.04 | 47.96 | 16500 | 0.3150 | 0.2735 |
123
- | 1.0209 | 49.42 | 17000 | 0.3175 | 0.2731 |
124
-
125
-
126
- ### Framework versions
127
-
128
- - Transformers 4.16.0.dev0
129
- - Pytorch 1.10.0+cu102
130
- - Datasets 1.17.1.dev0
131
- - Tokenizers 0.10.3
132
-
133
- #### Evaluation Commands
134
-
135
- 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test`
136
-
137
- ```bash
138
- python eval.py --model_id hf-test/xls-r-300m-sv --dataset mozilla-foundation/common_voice_7_0 --config sv-SE --split test
139
- ```
140
-
141
- 2. To evaluate on `speech-recognition-community-v2/dev_data`
142
-
143
- ```bash
144
- python eval.py --model_id hf-test/xls-r-300m-sv --dataset speech-recognition-community-v2/dev_data --config sv --split validation --chunk_length_s 5.0 --stride_length_s 1.0
145
- ```
146
-
147
- ### Inference With LM
148
-
149
- ```python
150
- import torch
151
- from datasets import load_dataset
152
- from transformers import AutoModelForCTC, AutoProcessor
153
- import torchaudio.functional as F
154
-
155
-
156
- model_id = "hf-test/xls-r-300m-sv"
157
-
158
- sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "sv-SE", split="test", streaming=True, use_auth_token=True))
159
-
160
- sample = next(sample_iter)
161
- resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
162
-
163
- model = AutoModelForCTC.from_pretrained(model_id)
164
- processor = AutoProcessor.from_pretrained(model_id)
165
-
166
- input_values = processor(resampled_audio, return_tensors="pt").input_values
167
-
168
- with torch.no_grad():
169
- logits = model(input_values).logits
170
-
171
- transcription = processor.batch_decode(logits.numpy()).text
172
- # => "jag lämnade grovjobbet åt honom"
173
- ```
174
-
175
- ### Eval results on Common Voice 7 "test" (WER):
176
-
177
- | Without LM | With LM (run `./eval.py`) |
178
- |---|---|
179
- | 27.30 | 18.85 |
180
-
181
-