--- language: - mt license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - mt - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-1b-cv8-mt results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mt metrics: - name: Test WER type: wer value: 17.57 - name: Test CER type: cer value: 3.86 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mt metrics: - name: Test WER type: wer value: null - name: Test CER type: cer value: null --- # wav2vec2-large-xls-r-1b-cv8-mt This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2210 - Wer: 0.1974 ## Model description Note: another version of this model is available with a KenLM 3gram model. This model performs better than this model. See https://huggingface.co/RuudVelo/wav2vec2-large-xls-r-1b-cv8-mt-lm ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following config and hyperparameters were used during training: model = Wav2Vec2ForCTC.from_pretrained( "facebook/wav2vec2-xls-r-1b", attention_dropout=0.05, hidden_dropout=0.05, feat_proj_dropout=0.05, mask_time_prob=0.55, mask_feature_prob=0.10, layerdrop=0.05, ctc_zero_infinity=True, ctc_loss_reduction="mean", pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer), ) from transformers import TrainingArguments training_args = TrainingArguments( output_dir=repo_name, group_by_length=True, per_device_train_batch_size=32, gradient_accumulation_steps=2, evaluation_strategy="steps", num_train_epochs=50, gradient_checkpointing=True, fp16=True, save_steps=400, eval_steps=400, logging_steps=400, learning_rate=5.5e-05, warmup_steps=500, save_total_limit=2, push_to_hub=True, report_to="tensorboard") ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4564 | 13.33 | 400 | 0.3783 | 0.3981 | | 0.7931 | 26.66 | 800 | 0.2377 | 0.2298 | | 0.5364 | 39.98 | 1200 | 0.2210 | 0.1974 | Note that the test WER of 19.74 is different than the above reported 17.57. This was due to a bug which was found while processing files with an older version of the datasets library. The right library is listed below. ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0