Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- nl
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- automatic-speech-recognition
|
7 |
+
- mozilla-foundation/common_voice_8_0
|
8 |
+
- generated_from_trainer
|
9 |
+
datasets:
|
10 |
+
- common_voice
|
11 |
+
model-index:
|
12 |
+
- name: ''
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
#
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - NL dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.1479
|
24 |
+
- Wer: 0.1156
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 5e-05
|
44 |
+
- train_batch_size: 8
|
45 |
+
- eval_batch_size: 8
|
46 |
+
- seed: 42
|
47 |
+
- gradient_accumulation_steps: 5
|
48 |
+
- total_train_batch_size: 40
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- lr_scheduler_warmup_steps: 500
|
52 |
+
- num_epochs: 50.0
|
53 |
+
- mixed_precision_training: Native AMP
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
58 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
59 |
+
| 1.2223 | 0.52 | 500 | 0.3866 | 0.3425 |
|
60 |
+
| 1.0748 | 1.03 | 1000 | 0.2574 | 0.2169 |
|
61 |
+
| 1.0416 | 1.55 | 1500 | 0.2177 | 0.1946 |
|
62 |
+
| 0.9951 | 2.06 | 2000 | 0.2008 | 0.1760 |
|
63 |
+
| 0.975 | 2.58 | 2500 | 0.1961 | 0.1751 |
|
64 |
+
| 0.9461 | 3.1 | 3000 | 0.1989 | 0.1782 |
|
65 |
+
| 0.9381 | 3.61 | 3500 | 0.1928 | 0.1699 |
|
66 |
+
| 0.934 | 4.13 | 4000 | 0.1923 | 0.1633 |
|
67 |
+
| 0.9322 | 4.64 | 4500 | 0.1871 | 0.1634 |
|
68 |
+
| 0.9012 | 5.16 | 5000 | 0.1890 | 0.1702 |
|
69 |
+
| 0.9045 | 5.68 | 5500 | 0.1882 | 0.1740 |
|
70 |
+
| 0.8826 | 6.19 | 6000 | 0.1856 | 0.1575 |
|
71 |
+
| 0.8848 | 6.71 | 6500 | 0.1861 | 0.1617 |
|
72 |
+
| 0.8723 | 7.22 | 7000 | 0.1927 | 0.1646 |
|
73 |
+
| 0.8725 | 7.74 | 7500 | 0.1798 | 0.1531 |
|
74 |
+
| 0.8573 | 8.26 | 8000 | 0.1781 | 0.1587 |
|
75 |
+
| 0.8633 | 8.77 | 8500 | 0.1852 | 0.1628 |
|
76 |
+
| 0.8603 | 9.29 | 9000 | 0.1833 | 0.1601 |
|
77 |
+
| 0.8421 | 9.8 | 9500 | 0.1788 | 0.1543 |
|
78 |
+
| 0.8404 | 10.32 | 10000 | 0.1844 | 0.1556 |
|
79 |
+
| 0.8342 | 10.84 | 10500 | 0.1770 | 0.1538 |
|
80 |
+
| 0.8161 | 11.35 | 11000 | 0.1821 | 0.1567 |
|
81 |
+
| 0.8371 | 11.87 | 11500 | 0.1909 | 0.1629 |
|
82 |
+
| 0.8083 | 12.38 | 12000 | 0.1778 | 0.1498 |
|
83 |
+
| 0.806 | 12.9 | 12500 | 0.1802 | 0.1547 |
|
84 |
+
| 0.8013 | 13.42 | 13000 | 0.1859 | 0.1584 |
|
85 |
+
| 0.7913 | 13.93 | 13500 | 0.1875 | 0.1517 |
|
86 |
+
| 0.8063 | 14.45 | 14000 | 0.1799 | 0.1571 |
|
87 |
+
| 0.7991 | 14.96 | 14500 | 0.1792 | 0.1538 |
|
88 |
+
| 0.7843 | 15.48 | 15000 | 0.1753 | 0.1464 |
|
89 |
+
| 0.7905 | 16.0 | 15500 | 0.1784 | 0.1508 |
|
90 |
+
| 0.7808 | 16.51 | 16000 | 0.1771 | 0.1485 |
|
91 |
+
| 0.7743 | 17.03 | 16500 | 0.1795 | 0.1491 |
|
92 |
+
| 0.7833 | 17.54 | 17000 | 0.1722 | 0.1484 |
|
93 |
+
| 0.7763 | 18.06 | 17500 | 0.1767 | 0.1518 |
|
94 |
+
| 0.7698 | 18.58 | 18000 | 0.1720 | 0.1460 |
|
95 |
+
| 0.7571 | 19.09 | 18500 | 0.1735 | 0.1478 |
|
96 |
+
| 0.7673 | 19.61 | 19000 | 0.1817 | 0.1511 |
|
97 |
+
| 0.7415 | 20.12 | 19500 | 0.1763 | 0.1481 |
|
98 |
+
| 0.751 | 20.64 | 20000 | 0.1742 | 0.1484 |
|
99 |
+
| 0.7563 | 21.16 | 20500 | 0.1810 | 0.1611 |
|
100 |
+
| 0.7423 | 21.67 | 21000 | 0.1817 | 0.1557 |
|
101 |
+
| 0.7242 | 22.19 | 21500 | 0.1690 | 0.1446 |
|
102 |
+
| 0.7251 | 22.7 | 22000 | 0.1684 | 0.1446 |
|
103 |
+
| 0.7302 | 23.22 | 22500 | 0.1735 | 0.1430 |
|
104 |
+
| 0.733 | 23.74 | 23000 | 0.1720 | 0.1454 |
|
105 |
+
| 0.7128 | 24.25 | 23500 | 0.1668 | 0.1383 |
|
106 |
+
| 0.7184 | 24.77 | 24000 | 0.1635 | 0.1377 |
|
107 |
+
| 0.7015 | 25.28 | 24500 | 0.1646 | 0.1389 |
|
108 |
+
| 0.7198 | 25.8 | 25000 | 0.1775 | 0.1462 |
|
109 |
+
| 0.7178 | 26.32 | 25500 | 0.1705 | 0.1419 |
|
110 |
+
| 0.7199 | 26.83 | 26000 | 0.1649 | 0.1416 |
|
111 |
+
| 0.6981 | 27.35 | 26500 | 0.1724 | 0.1418 |
|
112 |
+
| 0.6886 | 27.86 | 27000 | 0.1633 | 0.1382 |
|
113 |
+
| 0.6922 | 28.38 | 27500 | 0.1698 | 0.1420 |
|
114 |
+
| 0.6833 | 28.9 | 28000 | 0.1611 | 0.1351 |
|
115 |
+
| 0.6798 | 29.41 | 28500 | 0.1639 | 0.1365 |
|
116 |
+
| 0.6711 | 29.93 | 29000 | 0.1668 | 0.1358 |
|
117 |
+
| 0.6762 | 30.44 | 29500 | 0.1682 | 0.1355 |
|
118 |
+
| 0.6594 | 30.96 | 30000 | 0.1629 | 0.1345 |
|
119 |
+
| 0.6664 | 31.48 | 30500 | 0.1625 | 0.1321 |
|
120 |
+
| 0.6838 | 31.99 | 31000 | 0.1597 | 0.1372 |
|
121 |
+
| 0.6603 | 32.51 | 31500 | 0.1583 | 0.1302 |
|
122 |
+
| 0.6468 | 33.02 | 32000 | 0.1595 | 0.1322 |
|
123 |
+
| 0.6464 | 33.54 | 32500 | 0.1609 | 0.1315 |
|
124 |
+
| 0.6623 | 34.06 | 33000 | 0.1622 | 0.1366 |
|
125 |
+
| 0.6414 | 34.57 | 33500 | 0.1587 | 0.1330 |
|
126 |
+
| 0.6242 | 35.09 | 34000 | 0.1614 | 0.1337 |
|
127 |
+
| 0.632 | 35.6 | 34500 | 0.1568 | 0.1272 |
|
128 |
+
| 0.6346 | 36.12 | 35000 | 0.1583 | 0.1274 |
|
129 |
+
| 0.6143 | 36.64 | 35500 | 0.1576 | 0.1264 |
|
130 |
+
| 0.6208 | 37.15 | 36000 | 0.1621 | 0.1263 |
|
131 |
+
| 0.6185 | 37.67 | 36500 | 0.1623 | 0.1270 |
|
132 |
+
| 0.6128 | 38.18 | 37000 | 0.1604 | 0.1268 |
|
133 |
+
| 0.6151 | 38.7 | 37500 | 0.1593 | 0.1246 |
|
134 |
+
| 0.6082 | 39.22 | 38000 | 0.1532 | 0.1238 |
|
135 |
+
| 0.6 | 39.73 | 38500 | 0.1524 | 0.1224 |
|
136 |
+
| 0.6032 | 40.25 | 39000 | 0.1521 | 0.1212 |
|
137 |
+
| 0.6016 | 40.76 | 39500 | 0.1551 | 0.1215 |
|
138 |
+
| 0.6009 | 41.28 | 40000 | 0.1523 | 0.1215 |
|
139 |
+
| 0.5875 | 41.8 | 40500 | 0.1541 | 0.1216 |
|
140 |
+
| 0.608 | 42.31 | 41000 | 0.1536 | 0.1209 |
|
141 |
+
| 0.5876 | 42.83 | 41500 | 0.1567 | 0.1211 |
|
142 |
+
| 0.5714 | 43.34 | 42000 | 0.1532 | 0.1217 |
|
143 |
+
| 0.5756 | 43.86 | 42500 | 0.1516 | 0.1196 |
|
144 |
+
| 0.5719 | 44.38 | 43000 | 0.1491 | 0.1191 |
|
145 |
+
| 0.5829 | 44.89 | 43500 | 0.1497 | 0.1193 |
|
146 |
+
| 0.5664 | 45.41 | 44000 | 0.1487 | 0.1173 |
|
147 |
+
| 0.5707 | 45.92 | 44500 | 0.1470 | 0.1164 |
|
148 |
+
| 0.5696 | 46.44 | 45000 | 0.1479 | 0.1161 |
|
149 |
+
| 0.5767 | 46.96 | 45500 | 0.1492 | 0.1175 |
|
150 |
+
| 0.5573 | 47.47 | 46000 | 0.1471 | 0.1165 |
|
151 |
+
| 0.5625 | 47.99 | 46500 | 0.1484 | 0.1168 |
|
152 |
+
| 0.5671 | 48.5 | 47000 | 0.1474 | 0.1162 |
|
153 |
+
| 0.5484 | 49.02 | 47500 | 0.1479 | 0.1158 |
|
154 |
+
| 0.555 | 49.54 | 48000 | 0.1477 | 0.1157 |
|
155 |
+
|
156 |
+
|
157 |
+
### Framework versions
|
158 |
+
|
159 |
+
- Transformers 4.17.0.dev0
|
160 |
+
- Pytorch 1.10.2+cu102
|
161 |
+
- Datasets 1.18.2.dev0
|
162 |
+
- Tokenizers 0.11.0
|