--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - nl - robust-speech-event - model_for_talk - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-cv8-nl results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: nl metrics: - name: Test WER type: wer value: 14.53 - name: Test CER type: cer value: 4.7 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: nl metrics: - name: Test WER type: wer value: 33.7 - name: Test CER type: cer value: 15.64 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: nl metrics: - name: Test WER type: wer value: 35.19 --- # wav2vec2-large-xls-r-300m-cv8-nl This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. In addition a 6gram KenLM model was trained and used. The KenLM model was based on train+validation Common Voice 8 It achieves results depicted on the rigth side on the model card (testset CV8) ## Model description Dutch wav2vec2-xls-r-300m model using Common Voice 8 dataset ## Intended uses & limitations More information needed ## Training and evaluation data The model was trained on Dutch common voice 8 with 75 epochs. The train set consisted of the common voice 8 train set and evaluation set was the common voice 8 validation set. The WER reported is on the common voice 8 test set which was not part of training nor validation (eval) ## Training procedure ### Training hyperparameters ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.1 - Tokenizers 0.11.0