a2c-PandaReachDense-v2 / config.json
S3S3's picture
Initial commit
e0070cd
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd392d4d000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd392d45c00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688052072601263670, "learning_rate": 0.00095, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAALgTEPoY9ujy5pAo/LgTEPoY9ujy5pAo/LgTEPoY9ujy5pAo/LgTEPoY9ujy5pAo/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA71O8v2G0tT8ljMg/BsEIP7lxxT9qRpE/vRFwPze2dT9YIbQ/mvW/v25Hgz/nJFk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAuBMQ+hj26PLmkCj95lRi8CYJfOshu9bouBMQ+hj26PLmkCj95lRi8CYJfOshu9bouBMQ+hj26PLmkCj95lRi8CYJfOshu9bouBMQ+hj26PLmkCj95lRi8CYJfOshu9bqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3828444 0.02273441 0.54157597]\n [0.3828444 0.02273441 0.54157597]\n [0.3828444 0.02273441 0.54157597]\n [0.3828444 0.02273441 0.54157597]]", "desired_goal": "[[-1.4713115 1.4195672 1.5667769 ]\n [ 0.5341953 1.542533 1.1349614 ]\n [ 0.93777066 0.9598116 1.4072676 ]\n [-1.4996827 1.0256174 0.84821934]]", "observation": "[[ 0.3828444 0.02273441 0.54157597 -0.00931298 0.00085262 -0.0018725 ]\n [ 0.3828444 0.02273441 0.54157597 -0.00931298 0.00085262 -0.0018725 ]\n [ 0.3828444 0.02273441 0.54157597 -0.00931298 0.00085262 -0.0018725 ]\n [ 0.3828444 0.02273441 0.54157597 -0.00931298 0.00085262 -0.0018725 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA27+uPEk1Ib3aV2M9q3C6vRKfQLwTn00+H/0HvuHRqj1xbm4+C9IKvvGxVr2zuL49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02133172 -0.03935746 0.0555037 ]\n [-0.09103521 -0.01175668 0.20080213]\n [-0.13280152 0.08340812 0.23284318]\n [-0.13556688 -0.05241579 0.09312572]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv/ye2d/axouMAWyUSzKMAXSUR0CkJbpgCwKTdX2UKGgGR7/5NroGIKtxaAdLMmgIR0CkJXn/DLr5dX2UKGgGR7/5dcbBGhEjaAdLMmgIR0CkJSJw84gidX2UKGgGR7/4kVvddmg8aAdLMmgIR0CkJNpPykKvdX2UKGgGR7/8YkE9t/FzaAdLMmgIR0CkJpVX3g1ndX2UKGgGR7/6UGRmseXBaAdLMmgIR0CkJlTvRZ2ZdX2UKGgGR7/+edkJ8fFKaAdLMmgIR0CkJf1QhwERdX2UKGgGR7/5dZRsMy8BaAdLMmgIR0CkJbU6xPfsdX2UKGgGR8AB5MBZIQOGaAdLMmgIR0CkJ2eb3Gn5dX2UKGgGR7/6UgfU4JeFaAdLMmgIR0CkJyc+aBqcdX2UKGgGR7/1iemNzbN9aAdLMmgIR0CkJs+XRgJDdX2UKGgGR7/4ZbQkX1rZaAdLMmgIR0CkJoeCK77LdX2UKGgGR7/4+KsMiKR/aAdLMmgIR0CkKFGEPDpDdX2UKGgGR7/8+jVQQ+UyaAdLMmgIR0CkKBFGG21EdX2UKGgGR8AAtp/PPcBVaAdLMmgIR0CkJ7m5MDfWdX2UKGgGR7/9gPRRdhRZaAdLMmgIR0CkJ3GtZFG5dX2UKGgGR7/7Te40/GEPaAdLMmgIR0CkKSUEgW8AdX2UKGgGR7/3mlqJuVHGaAdLMmgIR0CkKOSt3fQ8dX2UKGgGR7//dk4FRpDeaAdLMmgIR0CkKI0sOG0vdX2UKGgGR7/7jRlYlpoLaAdLMmgIR0CkKEUUfxMGdX2UKGgGR8AAzrcCYCyRaAdLMmgIR0CkKgU+s5n2dX2UKGgGR7/7UQCjk+5faAdLMmgIR0CkKcTpX6qLdX2UKGgGR7/4qw+t8uzyaAdLMmgIR0CkKW1DKHO9dX2UKGgGR7//IMnZ00WNaAdLMmgIR0CkKSUipvP1dX2UKGgGR7/3WQXAM2FWaAdLMmgIR0CkKtt7jT8YdX2UKGgGR7/6Q3974SHuaAdLMmgIR0CkKpseXAuadX2UKGgGR7/6+b/ffoA5aAdLMmgIR0CkKkOe8PFvdX2UKGgGR7/2unuRcNYsaAdLMmgIR0CkKfubqhUSdX2UKGgGR7/3SVv/BFd+aAdLMmgIR0CkK66l1r6+dX2UKGgGR8ABsfs/pt78aAdLMmgIR0CkK25DRc/udX2UKGgGR7/4tdzGPxQSaAdLMmgIR0CkKxaiTMaCdX2UKGgGR7/4otDlYEGJaAdLMmgIR0CkKs56D5CXdX2UKGgGR7/6m9cry1/laAdLMmgIR0CkLIjTKDChdX2UKGgGR7/71xS5y2hJaAdLMmgIR0CkLEh1Tzd2dX2UKGgGR7/6ZOBUaQ3haAdLMmgIR0CkK/EY4yXVdX2UKGgGR7/54mTkhib2aAdLMmgIR0CkK6j7yhBadX2UKGgGR7/9xIz3yqdZaAdLMmgIR0CkLWVlGwzMdX2UKGgGR7/985n13+uOaAdLMmgIR0CkLSUQCjk/dX2UKGgGR7/2T5TIeYD1aAdLMmgIR0CkLM2KMvRJdX2UKGgGR7/9YSg5BC2MaAdLMmgIR0CkLIVnuiN9dX2UKGgGR7/71eF+NLlFaAdLMmgIR0CkLnV14gRsdX2UKGgGR7/7d7BwdbPhaAdLMmgIR0CkLjXCKrJbdX2UKGgGR7/7M4cWCVbBaAdLMmgIR0CkLd6tLcsUdX2UKGgGR7/3k/GEPDpDaAdLMmgIR0CkLZcvmHQAdX2UKGgGR7/2TEvTPSlWaAdLMmgIR0CkL9BRQ79ydX2UKGgGR7/5mE4//vORaAdLMmgIR0CkL5ChFmWddX2UKGgGR7/6QP/aQFLWaAdLMmgIR0CkLzm3fAKwdX2UKGgGR7/54SteUpuuaAdLMmgIR0CkLvIrOJLvdX2UKGgGR7/7yuhbnoxIaAdLMmgIR0CkMTbbDdgwdX2UKGgGR7/7+jdpItlJaAdLMmgIR0CkMPdXcQAddX2UKGgGR7/7eOsDGLk0aAdLMmgIR0CkMKBw2l2vdX2UKGgGR7/7gFX7tRekaAdLMmgIR0CkMFkLhJiBdX2UKGgGR7/2A5eZ5Rj0aAdLMmgIR0CkMp3np0OmdX2UKGgGR8AARpWV/tpmaAdLMmgIR0CkMl4vWYnfdX2UKGgGR7/+Jn13+uNhaAdLMmgIR0CkMgdZA6dUdX2UKGgGR8AAskMTewcHaAdLMmgIR0CkMb/ATIvKdX2UKGgGR7/24DHOryUcaAdLMmgIR0CkNBIJ7b+MdX2UKGgGR7/8Ef9xZMcqaAdLMmgIR0CkM9JiAlOXdX2UKGgGR7/2/BJqZc9oaAdLMmgIR0CkM3torWiDdX2UKGgGR7/9uS0Sh8IBaAdLMmgIR0CkMzPM8ox6dX2UKGgGR8AAb9qDbrTqaAdLMmgIR0CkNZhdMTN/dX2UKGgGR7/9QHRkVeruaAdLMmgIR0CkNViGetjkdX2UKGgGR7/15kCmuTzNaAdLMmgIR0CkNQF8XvYwdX2UKGgGR7//dayKNyYHaAdLMmgIR0CkNLosqaw2dX2UKGgGR7/6FT3qRlpXaAdLMmgIR0CkNwRAKOT8dX2UKGgGR8AAYYekpI+XaAdLMmgIR0CkNsSLQ5WBdX2UKGgGR7/86fJ3gUDdaAdLMmgIR0CkNm2Ebo8qdX2UKGgGR7/7WU4aP0ZnaAdLMmgIR0CkNiYEOiFkdX2UKGgGR8AAZuIhyKekaAdLMmgIR0CkOG+KbaysdX2UKGgGR7/5gdCE6DGtaAdLMmgIR0CkOC/SYw7DdX2UKGgGR7/9Z8a4tpVTaAdLMmgIR0CkN9kFwDNhdX2UKGgGR7/6bOZ9d/rjaAdLMmgIR0CkN5GOMl1KdX2UKGgGR7/7w482aUiZaAdLMmgIR0CkObFijL0SdX2UKGgGR7/9EeuFHrhSaAdLMmgIR0CkOXD4gzP9dX2UKGgGR7/6QkHD7655aAdLMmgIR0CkORlJQLuydX2UKGgGR7/6mTs6aLGaaAdLMmgIR0CkONEtuk1udX2UKGgGR7/8MuBczImxaAdLMmgIR0CkOodbxEv1dX2UKGgGR8ABy9PDYRNAaAdLMmgIR0CkOkb70nPWdX2UKGgGR7/3qe05U96kaAdLMmgIR0CkOe9WQwK0dX2UKGgGR7/46y8jAzpHaAdLMmgIR0CkOadMCcPOdX2UKGgGR7/7syi22G7BaAdLMmgIR0CkO1msV+I/dX2UKGgGR7/92DlHSWqtaAdLMmgIR0CkOxlS0jTsdX2UKGgGR8ABHaDf3vhIaAdLMmgIR0CkOsG4RVZLdX2UKGgGR7/6GfseGO+7aAdLMmgIR0CkOnmT1TR6dX2UKGgGR7/79oi9qUNbaAdLMmgIR0CkPDQZn+Q2dX2UKGgGR7/6h82Jiy6daAdLMmgIR0CkO/O7YkE+dX2UKGgGR7/+6KLsKLKnaAdLMmgIR0CkO5x/ustDdX2UKGgGR7/9dkJ8fFJhaAdLMmgIR0CkO1RVyWAxdX2UKGgGR7/9FIiC8OCoaAdLMmgIR0CkPQnxz7uVdX2UKGgGR7/6OfukUKzBaAdLMmgIR0CkPMmeMAFQdX2UKGgGR7//QOavzOHGaAdLMmgIR0CkPHIVuaWpdX2UKGgGR7/7sb3oLXtjaAdLMmgIR0CkPCqGlANYdX2UKGgGR7/59HUc4o7WaAdLMmgIR0CkPeg6Mir1dX2UKGgGR7/7a2v0RODbaAdLMmgIR0CkPafo7muDdX2UKGgGR7//2nO0LMLXaAdLMmgIR0CkPVBStNi6dX2UKGgGR7/8jzyz5XU6aAdLMmgIR0CkPQg8r7O3dX2UKGgGR7/4tonKGL1maAdLMmgIR0CkPr60hNdrdX2UKGgGR7/7ZuqFRHf/aAdLMmgIR0CkPn5lFtsOdX2UKGgGR7///2TPjXFtaAdLMmgIR0CkPibADaGpdX2UKGgGR7/8NRiw0O3EaAdLMmgIR0CkPd6YeDFqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PIS13MY/FhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.21.0"}}