--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_keras_callback model-index: - name: SIA86/bert-cased-text-classification results: [] widget: - text: "Не могу отправить письмо с электронной почты." example_title: "Почта" - text: "Прошу изготовить пропуск новому сотруднику." example_title: "Пропуск" - text: "Прошу установить AutoCad на мой компьютер" example_title: "Программы" --- # SIA86/bert-cased-text-classification This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0719 - Train Accuracy: 0.9772 - Validation Loss: 0.8075 - Validation Accuracy: 0.8485 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 2320, 'end_learning_rate': 0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 2.8423 | 0.2313 | 2.5340 | 0.3593 | 0 | | 2.4502 | 0.3181 | 2.3051 | 0.3333 | 1 | | 2.2064 | 0.3648 | 1.9143 | 0.4416 | 2 | | 1.6431 | 0.5494 | 1.5876 | 0.5411 | 3 | | 1.1282 | 0.6960 | 1.4404 | 0.6190 | 4 | | 0.8128 | 0.7861 | 1.0982 | 0.7143 | 5 | | 0.6016 | 0.8534 | 1.0513 | 0.7532 | 6 | | 0.4495 | 0.8947 | 0.9108 | 0.7879 | 7 | | 0.2991 | 0.9414 | 0.8437 | 0.8182 | 8 | | 0.2068 | 0.9609 | 0.7936 | 0.8182 | 9 | | 0.1594 | 0.9729 | 0.8264 | 0.8182 | 10 | | 0.1364 | 0.9707 | 0.7984 | 0.8312 | 11 | | 0.1217 | 0.9707 | 0.7948 | 0.8268 | 12 | | 0.1053 | 0.9729 | 0.7847 | 0.8398 | 13 | | 0.0968 | 0.9729 | 0.7850 | 0.8398 | 14 | | 0.0879 | 0.9739 | 0.7976 | 0.8442 | 15 | | 0.0821 | 0.9718 | 0.8005 | 0.8442 | 16 | | 0.0770 | 0.9750 | 0.7967 | 0.8485 | 17 | | 0.0772 | 0.9772 | 0.8043 | 0.8485 | 18 | | 0.0719 | 0.9772 | 0.8075 | 0.8485 | 19 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.1 - Tokenizers 0.13.3