File size: 5,161 Bytes
8b4523b aab5371 876dff9 aab5371 1e2b39a aab5371 876dff9 aab5371 8b4523b aab5371 b466f87 64771ba b466f87 64771ba f932e73 b96632b 64771ba b466f87 64771ba b466f87 64771ba aab5371 64771ba a0b45c2 aab5371 a0b45c2 aab5371 60089f5 aab5371 876dff9 aab5371 876dff9 aab5371 876dff9 aab5371 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
language: fa
datasets:
- common_voice_6_1
tags:
- audio
- automatic-speech-recognition
license: mit
widget:
- example_title: Common Voice Sample 1
src: https://datasets-server.huggingface.co/assets/common_voice/--/fa/train/0/audio/audio.mp3
- example_title: Common Voice Sample 2
src: https://datasets-server.huggingface.co/assets/common_voice/--/fa/train/1/audio/audio.mp3
model-index:
- name: Sharif-wav2vec2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice Corpus 6.1 (clean)
type: common_voice_6_1
config: clean
split: test
args:
language: fa
metrics:
- name: Test WER
type: wer
value: 6.0
---
# Sharif-wav2vec2
This is the fine-tuned version of Sharif Wav2vec2 for Farsi. Prior to the usage, you may need to install the below dependencies:
```shell
pip -q install pyctcdecode
python -m pip -q install pypi-kenlm
```
For testing you can use the hoster API at the hugging face (There are provided examples from common voice) it may take a while to transcribe the given voice. Or you can use bellow code for local run:
```python
import tensorflow
import torchaudio
import torch
import numpy as np
from transformers import AutoProcessor, AutoModelForCTC
processor = AutoProcessor.from_pretrained("SLPL/Sharif-wav2vec2")
model = AutoModelForCTC.from_pretrained("SLPL/Sharif-wav2vec2")
speech_array, sampling_rate = torchaudio.load("path/to/your.wav")
speech_array = speech_array.squeeze().numpy()
features = processor(
speech_array,
sampling_rate=processor.feature_extractor.sampling_rate,
return_tensors="pt",
padding=True)
with torch.no_grad():
logits = model(
features.input_values,
attention_mask=features.attention_mask).logits
prediction = processor.batch_decode(logits.numpy()).text
print(prediction[0])
# تست
```
The base model fine-tuned on 108 hours of Commonvoice on 16kHz sampled speech audio. When using the model
make sure that your speech input is also sampled at 16Khz.
# Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli
# **Abstract**
<!--
We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data.
-->
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.
# Usage
To transcribe Persian audio files the model can be used as a standalone acoustic model as follows:
```python
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import torch
# load model and tokenizer
processor = Wav2Vec2Processor.from_pretrained("SLPL/Sharif-wav2vec2")
model = Wav2Vec2ForCTC.from_pretrained("SLPL/Sharif-wav2vec2")
# load dummy dataset and read soundfiles
# ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
# tokenize
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1
# retrieve logits
logits = model(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
```
## Evaluation
This code snippet shows how to evaluate **facebook/wav2vec2-base-960h** on LibriSpeech's "clean" and "other" test data.
```python
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
def map_to_pred(batch):
input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values
with torch.no_grad():
logits = model(input_values.to("cuda")).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"])
print("WER:", wer(result["text"], result["transcription"]))
```
*Result (WER)*:
| "clean" | "other" |
|---|---|
| 3.4 | 8.6 | |