Update README.md
Browse files
README.md
CHANGED
@@ -5,59 +5,3 @@ pipeline_tag: image-to-text
|
|
5 |
tags:
|
6 |
- image-captioning
|
7 |
---
|
8 |
-
# FuseCap: Leveraging Large Language Models for Enriched Fused Image Captions
|
9 |
-
|
10 |
-
A framework designed to generate semantically rich image captions.
|
11 |
-
|
12 |
-
## Resources
|
13 |
-
|
14 |
-
- π» **Project Page**: For more details, visit the official [project page](https://rotsteinnoam.github.io/FuseCap/).
|
15 |
-
|
16 |
-
- π **Read the Paper**: You can find the paper [here](https://arxiv.org/abs/2305.17718).
|
17 |
-
|
18 |
-
- π **Demo**: Try out our BLIP-based model [demo](https://huggingface.co/spaces/noamrot/FuseCap) trained using FuseCap.
|
19 |
-
|
20 |
-
- π **Code Repository**: The code for FuseCap can be found in the [GitHub repository](https://github.com/RotsteinNoam/FuseCap).
|
21 |
-
|
22 |
-
- ποΈ **Datasets**: The fused captions datasets can be accessed from [here](https://github.com/RotsteinNoam/FuseCap#datasets).
|
23 |
-
|
24 |
-
#### Running the model
|
25 |
-
|
26 |
-
Our BLIP-based model can be run using the following code,
|
27 |
-
|
28 |
-
```python
|
29 |
-
import requests
|
30 |
-
from PIL import Image
|
31 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration
|
32 |
-
import torch
|
33 |
-
|
34 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
35 |
-
processor = BlipProcessor.from_pretrained("noamrot/FuseCap")
|
36 |
-
model = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap").to(device)
|
37 |
-
|
38 |
-
img_url = 'https://huggingface.co/spaces/noamrot/FuseCap/resolve/main/bike.jpg'
|
39 |
-
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
40 |
-
|
41 |
-
text = "a picture of "
|
42 |
-
inputs = processor(raw_image, text, return_tensors="pt").to(device)
|
43 |
-
|
44 |
-
out = model.generate(**inputs, num_beams = 3)
|
45 |
-
print(processor.decode(out[0], skip_special_tokens=True))
|
46 |
-
```
|
47 |
-
|
48 |
-
## Upcoming Updates
|
49 |
-
|
50 |
-
The official codebase, datasets and trained models for this project will be released soon.
|
51 |
-
|
52 |
-
## BibTeX
|
53 |
-
|
54 |
-
``` Citation
|
55 |
-
@article{rotstein2023fusecap,
|
56 |
-
title={FuseCap: Leveraging Large Language Models for Enriched Fused Image Captions},
|
57 |
-
author={Noam Rotstein and David Bensaid and Shaked Brody and Roy Ganz and Ron Kimmel},
|
58 |
-
year={2023},
|
59 |
-
eprint={2305.17718},
|
60 |
-
archivePrefix={arXiv},
|
61 |
-
primaryClass={cs.CV}
|
62 |
-
}
|
63 |
-
```
|
|
|
5 |
tags:
|
6 |
- image-captioning
|
7 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|