# demo_script.py | |
import tensorflow as tf | |
from watermarking_functions import detect_watermark_LSB | |
# Load the trained model with the embedded watermark | |
model_with_watermark = tf.keras.models.load_model('text_classification_model_with_watermark.h5') | |
# Detect and extract the watermark from the model | |
detected_watermark = detect_watermark_LSB(model_with_watermark) | |
if detected_watermark: | |
print("Watermark Detected:", detected_watermark) | |
else: | |
print("No watermark found or watermark detection failed.") |