--- library_name: transformers language: - fa license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper-large-v3-turbo-fa - Sadegh Karimi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: fa split: test args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 9.627528266117483 --- # Whisper-large-v3-turbo-fa - Sadegh Karimi This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0839 - Wer: 9.6275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.1789 | 0.0217 | 500 | 0.2427 | 26.4099 | | 0.2077 | 0.0435 | 1000 | 0.2296 | 27.1873 | | 0.1928 | 0.0652 | 1500 | 0.2320 | 27.5951 | | 0.1801 | 0.0869 | 2000 | 0.2026 | 24.0409 | | 0.1865 | 0.1086 | 2500 | 0.1925 | 22.3742 | | 0.1535 | 0.1304 | 3000 | 0.1872 | 22.9511 | | 0.1463 | 0.1521 | 3500 | 0.1786 | 21.5436 | | 0.0935 | 0.1738 | 4000 | 0.1749 | 20.5330 | | 0.1052 | 0.1956 | 4500 | 0.1597 | 19.0314 | | 0.091 | 0.2173 | 5000 | 0.1553 | 20.2125 | | 0.0743 | 0.2390 | 5500 | 0.1474 | 16.9160 | | 0.096 | 0.2607 | 6000 | 0.1352 | 15.9027 | | 0.111 | 0.2825 | 6500 | 0.1259 | 14.9071 | | 0.089 | 0.3042 | 7000 | 0.1179 | 14.1146 | | 0.0813 | 0.3259 | 7500 | 0.1101 | 12.8653 | | 0.072 | 0.3477 | 8000 | 0.1012 | 11.8138 | | 0.0715 | 0.3694 | 8500 | 0.0948 | 10.9791 | | 0.0683 | 0.3911 | 9000 | 0.0903 | 10.2563 | | 0.0634 | 0.4128 | 9500 | 0.0861 | 9.6616 | | 0.0739 | 0.4346 | 10000 | 0.0839 | 9.6275 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.1.0+cu118 - Datasets 3.2.0 - Tokenizers 0.21.0