File size: 1,818 Bytes
0093cc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: deepset/gelectra-large-germanquad
tags:
- generated_from_trainer
model-index:
- name: Finetuned_Question_Answering_Model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Finetuned_Question_Answering_Model

This model is a fine-tuned version of [deepset/gelectra-large-germanquad](https://huggingface.co/deepset/gelectra-large-germanquad) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0090

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 5
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7296        | 1.0   | 3    | 0.0478          |
| 0.9269        | 2.0   | 6    | 0.0365          |
| 0.1316        | 3.0   | 9    | 0.0271          |
| 0.08          | 4.0   | 12   | 0.0201          |
| 0.0648        | 5.0   | 15   | 0.0155          |
| 0.0185        | 6.0   | 18   | 0.0133          |
| 0.0024        | 7.0   | 21   | 0.0112          |
| 0.0087        | 8.0   | 24   | 0.0100          |
| 0.0586        | 9.0   | 27   | 0.0092          |
| 0.0039        | 10.0  | 30   | 0.0090          |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2