--- license: mit base_model: deepset/gelectra-large-germanquad tags: - generated_from_trainer model-index: - name: Finetuned_Question_Answering_Model results: [] --- # Finetuned_Question_Answering_Model This model is a fine-tuned version of [deepset/gelectra-large-germanquad](https://huggingface.co/deepset/gelectra-large-germanquad) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1008 | 1.0 | 3 | 0.3691 | | 0.177 | 2.0 | 6 | 0.2874 | | 0.0763 | 3.0 | 9 | 0.2115 | | 0.0065 | 4.0 | 12 | 0.1496 | | 0.0075 | 5.0 | 15 | 0.0874 | | 0.0231 | 6.0 | 18 | 0.0727 | | 0.0059 | 7.0 | 21 | 0.0512 | | 0.0302 | 8.0 | 24 | 0.0407 | | 0.0017 | 9.0 | 27 | 0.0347 | | 0.0015 | 10.0 | 30 | 0.0331 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2+cpu - Datasets 2.18.0 - Tokenizers 0.15.2