--- license: mit base_model: deepset/gelectra-large-germanquad tags: - generated_from_trainer model-index: - name: Finetuned_Question_Answering_Model results: [] --- # Finetuned_Question_Answering_Model This model is a fine-tuned version of [deepset/gelectra-large-germanquad](https://huggingface.co/deepset/gelectra-large-germanquad) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7296 | 1.0 | 3 | 0.0478 | | 0.9269 | 2.0 | 6 | 0.0365 | | 0.1316 | 3.0 | 9 | 0.0271 | | 0.08 | 4.0 | 12 | 0.0201 | | 0.0648 | 5.0 | 15 | 0.0155 | | 0.0185 | 6.0 | 18 | 0.0133 | | 0.0024 | 7.0 | 21 | 0.0112 | | 0.0087 | 8.0 | 24 | 0.0100 | | 0.0586 | 9.0 | 27 | 0.0092 | | 0.0039 | 10.0 | 30 | 0.0090 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2