update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: ntu-spml/distilhubert
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- marsyas/gtzan
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: distilhubert-finetuned-gtzan
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Audio Classification
|
15 |
+
type: audio-classification
|
16 |
+
dataset:
|
17 |
+
name: GTZAN
|
18 |
+
type: marsyas/gtzan
|
19 |
+
config: all
|
20 |
+
split: train
|
21 |
+
args: all
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.87
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# distilhubert-finetuned-gtzan
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.7345
|
36 |
+
- Accuracy: 0.87
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 2
|
57 |
+
- eval_batch_size: 2
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 6
|
60 |
+
- total_train_batch_size: 12
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.2
|
64 |
+
- num_epochs: 20
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 2.2637 | 1.0 | 75 | 2.2059 | 0.34 |
|
71 |
+
| 1.8944 | 2.0 | 150 | 1.8194 | 0.41 |
|
72 |
+
| 1.5462 | 3.0 | 225 | 1.4462 | 0.6 |
|
73 |
+
| 1.27 | 4.0 | 300 | 1.1931 | 0.66 |
|
74 |
+
| 1.0759 | 5.0 | 375 | 0.9130 | 0.76 |
|
75 |
+
| 0.6731 | 6.0 | 450 | 0.8307 | 0.75 |
|
76 |
+
| 0.5021 | 7.0 | 525 | 0.6785 | 0.82 |
|
77 |
+
| 0.351 | 8.0 | 600 | 0.6946 | 0.8 |
|
78 |
+
| 0.259 | 9.0 | 675 | 0.5913 | 0.82 |
|
79 |
+
| 0.1789 | 10.0 | 750 | 0.6499 | 0.83 |
|
80 |
+
| 0.0655 | 11.0 | 825 | 0.5624 | 0.88 |
|
81 |
+
| 0.1194 | 12.0 | 900 | 0.6549 | 0.83 |
|
82 |
+
| 0.0874 | 13.0 | 975 | 0.6412 | 0.86 |
|
83 |
+
| 0.0142 | 14.0 | 1050 | 0.7119 | 0.86 |
|
84 |
+
| 0.0119 | 15.0 | 1125 | 0.7415 | 0.85 |
|
85 |
+
| 0.0093 | 16.0 | 1200 | 0.6833 | 0.87 |
|
86 |
+
| 0.0089 | 17.0 | 1275 | 0.7802 | 0.85 |
|
87 |
+
| 0.0142 | 18.0 | 1350 | 0.7611 | 0.85 |
|
88 |
+
| 0.0072 | 19.0 | 1425 | 0.7262 | 0.86 |
|
89 |
+
| 0.057 | 20.0 | 1500 | 0.7345 | 0.87 |
|
90 |
+
|
91 |
+
|
92 |
+
### Framework versions
|
93 |
+
|
94 |
+
- Transformers 4.32.0.dev0
|
95 |
+
- Pytorch 2.0.1+cu117
|
96 |
+
- Datasets 2.13.1
|
97 |
+
- Tokenizers 0.13.3
|