Sagicc commited on
Commit
d13fb23
1 Parent(s): 318b3da

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.87
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # distilhubert-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.7345
36
+ - Accuracy: 0.87
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 2
57
+ - eval_batch_size: 2
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 6
60
+ - total_train_batch_size: 12
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.2
64
+ - num_epochs: 20
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 2.2637 | 1.0 | 75 | 2.2059 | 0.34 |
71
+ | 1.8944 | 2.0 | 150 | 1.8194 | 0.41 |
72
+ | 1.5462 | 3.0 | 225 | 1.4462 | 0.6 |
73
+ | 1.27 | 4.0 | 300 | 1.1931 | 0.66 |
74
+ | 1.0759 | 5.0 | 375 | 0.9130 | 0.76 |
75
+ | 0.6731 | 6.0 | 450 | 0.8307 | 0.75 |
76
+ | 0.5021 | 7.0 | 525 | 0.6785 | 0.82 |
77
+ | 0.351 | 8.0 | 600 | 0.6946 | 0.8 |
78
+ | 0.259 | 9.0 | 675 | 0.5913 | 0.82 |
79
+ | 0.1789 | 10.0 | 750 | 0.6499 | 0.83 |
80
+ | 0.0655 | 11.0 | 825 | 0.5624 | 0.88 |
81
+ | 0.1194 | 12.0 | 900 | 0.6549 | 0.83 |
82
+ | 0.0874 | 13.0 | 975 | 0.6412 | 0.86 |
83
+ | 0.0142 | 14.0 | 1050 | 0.7119 | 0.86 |
84
+ | 0.0119 | 15.0 | 1125 | 0.7415 | 0.85 |
85
+ | 0.0093 | 16.0 | 1200 | 0.6833 | 0.87 |
86
+ | 0.0089 | 17.0 | 1275 | 0.7802 | 0.85 |
87
+ | 0.0142 | 18.0 | 1350 | 0.7611 | 0.85 |
88
+ | 0.0072 | 19.0 | 1425 | 0.7262 | 0.86 |
89
+ | 0.057 | 20.0 | 1500 | 0.7345 | 0.87 |
90
+
91
+
92
+ ### Framework versions
93
+
94
+ - Transformers 4.32.0.dev0
95
+ - Pytorch 2.0.1+cu117
96
+ - Datasets 2.13.1
97
+ - Tokenizers 0.13.3