--- language: - sr license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer datasets: - google/fleurs - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Large Sr Combined results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Google Fleurs type: google/fleurs config: sr split: test args: sr metrics: - name: Wer type: wer value: 0.06233709817549957 --- # Whisper Large v2 Sr Fleurs and CommonVoice This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the combined Google Fleurs and Mozilla Foundation Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.1749 - Wer Ortho: 0.1678 - Wer: 0.0623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0737 | 1.34 | 500 | 0.1735 | 0.1865 | 0.0908 | | 0.0304 | 2.67 | 1000 | 0.1622 | 0.1670 | 0.0728 | | 0.0156 | 4.01 | 1500 | 0.1749 | 0.1678 | 0.0623 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3