--- language: - tr license: apache-2.0 base_model: openai/whisper-medium tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Tr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: default split: None args: default metrics: - name: Wer type: wer value: 11.418685121107266 pipeline_tag: automatic-speech-recognition --- # Whisper Medium Tr This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1577 - Wer: 11.4187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0027 | 4.4444 | 50 | 0.1648 | 10.0923 | | 0.0011 | 8.8889 | 100 | 0.1786 | 12.0531 | | 0.0001 | 13.3333 | 150 | 0.1590 | 11.3610 | | 0.0 | 17.7778 | 200 | 0.1577 | 11.4187 | ### Framework versions - Transformers 4.43.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1