Sailesh9999 commited on
Commit
39056a5
·
verified ·
1 Parent(s): c012ac5

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,804 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: sentence-transformers
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - generated_from_trainer
11
+ - dataset_size:6300
12
+ - loss:MatryoshkaLoss
13
+ - loss:MultipleNegativesRankingLoss
14
+ base_model: BAAI/bge-base-en-v1.5
15
+ datasets: []
16
+ metrics:
17
+ - cosine_accuracy@1
18
+ - cosine_accuracy@3
19
+ - cosine_accuracy@5
20
+ - cosine_accuracy@10
21
+ - cosine_precision@1
22
+ - cosine_precision@3
23
+ - cosine_precision@5
24
+ - cosine_precision@10
25
+ - cosine_recall@1
26
+ - cosine_recall@3
27
+ - cosine_recall@5
28
+ - cosine_recall@10
29
+ - cosine_ndcg@10
30
+ - cosine_mrr@10
31
+ - cosine_map@10
32
+ widget:
33
+ - source_sentence: The Gross Merchandise Sales (GMS) decreased by 1.2% in 2023 compared
34
+ to 2022.
35
+ sentences:
36
+ - What specific matters did the CFPB investigate concerning Equifax?
37
+ - What was the percentage decline in GMS for the year ended December 31, 2023 compared
38
+ to 2022?
39
+ - What percentage of eBay's 2023 net revenues were attributed to international markets?
40
+ - source_sentence: Asset management and administration fees vary with changes in the
41
+ balances of client assets due to market fluctuations and client activity.
42
+ sentences:
43
+ - Why was there a net outflow of cash in financing activities in fiscal 2022?
44
+ - How do asset management and administration fees vary at The Charles Schwab Corporation?
45
+ - What are some key goals of the corporation related to climate change?
46
+ - source_sentence: Operating profit margin was 19.3 percent in 2023, compared with
47
+ 13.3 percent in 2022.
48
+ sentences:
49
+ - What was the operating profit margin for 2023?
50
+ - How do the studios compete in the entertainment industry?
51
+ - What types of audio products does Garmin's Fusion and JL Audio brands offer?
52
+ - source_sentence: Subsequent to 2023, on February 12, 2024, AbbVie borrowed $5.0
53
+ billion under the term loan credit agreement.
54
+ sentences:
55
+ - What percentage of U.S. dialysis patient service revenues in 2023 came from Medicare
56
+ and Medicare Advantage plans?
57
+ - What is Peloton Interactive, Inc. known for in the interactive fitness industry?
58
+ - What was the purpose stated by AbbVie for borrowing $5.0 billion under the term
59
+ loan credit agreement on February 12, 2024?
60
+ - source_sentence: Chipotle retains an independent third-party compensation consultant
61
+ each year to conduct a pay equity analysis of its U.S. and Canadian workforce,
62
+ including factors of pay such as grade level, tenure in role, and external market
63
+ conditions like geographic location, to ensure consistency and equitable treatment
64
+ among employees.
65
+ sentences:
66
+ - How does Chipotle ensure pay equity among its employees?
67
+ - How can one locate information on legal proceedings within the Consolidated Financial
68
+ Statements?
69
+ - What criteria did the independent audit use to assess the effectiveness of internal
70
+ control over financial reporting at the company?
71
+ pipeline_tag: sentence-similarity
72
+ model-index:
73
+ - name: BGE base Financial Matryoshka
74
+ results:
75
+ - task:
76
+ type: information-retrieval
77
+ name: Information Retrieval
78
+ dataset:
79
+ name: dim 768
80
+ type: dim_768
81
+ metrics:
82
+ - type: cosine_accuracy@1
83
+ value: 0.6871428571428572
84
+ name: Cosine Accuracy@1
85
+ - type: cosine_accuracy@3
86
+ value: 0.8214285714285714
87
+ name: Cosine Accuracy@3
88
+ - type: cosine_accuracy@5
89
+ value: 0.8585714285714285
90
+ name: Cosine Accuracy@5
91
+ - type: cosine_accuracy@10
92
+ value: 0.9
93
+ name: Cosine Accuracy@10
94
+ - type: cosine_precision@1
95
+ value: 0.6871428571428572
96
+ name: Cosine Precision@1
97
+ - type: cosine_precision@3
98
+ value: 0.27380952380952384
99
+ name: Cosine Precision@3
100
+ - type: cosine_precision@5
101
+ value: 0.1717142857142857
102
+ name: Cosine Precision@5
103
+ - type: cosine_precision@10
104
+ value: 0.09
105
+ name: Cosine Precision@10
106
+ - type: cosine_recall@1
107
+ value: 0.6871428571428572
108
+ name: Cosine Recall@1
109
+ - type: cosine_recall@3
110
+ value: 0.8214285714285714
111
+ name: Cosine Recall@3
112
+ - type: cosine_recall@5
113
+ value: 0.8585714285714285
114
+ name: Cosine Recall@5
115
+ - type: cosine_recall@10
116
+ value: 0.9
117
+ name: Cosine Recall@10
118
+ - type: cosine_ndcg@10
119
+ value: 0.7966931280955273
120
+ name: Cosine Ndcg@10
121
+ - type: cosine_mrr@10
122
+ value: 0.7633656462585031
123
+ name: Cosine Mrr@10
124
+ - type: cosine_map@10
125
+ value: 0.7633656462585034
126
+ name: Cosine Map@10
127
+ - task:
128
+ type: information-retrieval
129
+ name: Information Retrieval
130
+ dataset:
131
+ name: dim 512
132
+ type: dim_512
133
+ metrics:
134
+ - type: cosine_accuracy@1
135
+ value: 0.6857142857142857
136
+ name: Cosine Accuracy@1
137
+ - type: cosine_accuracy@3
138
+ value: 0.82
139
+ name: Cosine Accuracy@3
140
+ - type: cosine_accuracy@5
141
+ value: 0.8557142857142858
142
+ name: Cosine Accuracy@5
143
+ - type: cosine_accuracy@10
144
+ value: 0.9014285714285715
145
+ name: Cosine Accuracy@10
146
+ - type: cosine_precision@1
147
+ value: 0.6857142857142857
148
+ name: Cosine Precision@1
149
+ - type: cosine_precision@3
150
+ value: 0.2733333333333333
151
+ name: Cosine Precision@3
152
+ - type: cosine_precision@5
153
+ value: 0.17114285714285712
154
+ name: Cosine Precision@5
155
+ - type: cosine_precision@10
156
+ value: 0.09014285714285712
157
+ name: Cosine Precision@10
158
+ - type: cosine_recall@1
159
+ value: 0.6857142857142857
160
+ name: Cosine Recall@1
161
+ - type: cosine_recall@3
162
+ value: 0.82
163
+ name: Cosine Recall@3
164
+ - type: cosine_recall@5
165
+ value: 0.8557142857142858
166
+ name: Cosine Recall@5
167
+ - type: cosine_recall@10
168
+ value: 0.9014285714285715
169
+ name: Cosine Recall@10
170
+ - type: cosine_ndcg@10
171
+ value: 0.7951662657569053
172
+ name: Cosine Ndcg@10
173
+ - type: cosine_mrr@10
174
+ value: 0.761045918367347
175
+ name: Cosine Mrr@10
176
+ - type: cosine_map@10
177
+ value: 0.761045918367347
178
+ name: Cosine Map@10
179
+ - task:
180
+ type: information-retrieval
181
+ name: Information Retrieval
182
+ dataset:
183
+ name: dim 256
184
+ type: dim_256
185
+ metrics:
186
+ - type: cosine_accuracy@1
187
+ value: 0.6814285714285714
188
+ name: Cosine Accuracy@1
189
+ - type: cosine_accuracy@3
190
+ value: 0.8171428571428572
191
+ name: Cosine Accuracy@3
192
+ - type: cosine_accuracy@5
193
+ value: 0.8571428571428571
194
+ name: Cosine Accuracy@5
195
+ - type: cosine_accuracy@10
196
+ value: 0.8885714285714286
197
+ name: Cosine Accuracy@10
198
+ - type: cosine_precision@1
199
+ value: 0.6814285714285714
200
+ name: Cosine Precision@1
201
+ - type: cosine_precision@3
202
+ value: 0.2723809523809524
203
+ name: Cosine Precision@3
204
+ - type: cosine_precision@5
205
+ value: 0.17142857142857137
206
+ name: Cosine Precision@5
207
+ - type: cosine_precision@10
208
+ value: 0.08885714285714284
209
+ name: Cosine Precision@10
210
+ - type: cosine_recall@1
211
+ value: 0.6814285714285714
212
+ name: Cosine Recall@1
213
+ - type: cosine_recall@3
214
+ value: 0.8171428571428572
215
+ name: Cosine Recall@3
216
+ - type: cosine_recall@5
217
+ value: 0.8571428571428571
218
+ name: Cosine Recall@5
219
+ - type: cosine_recall@10
220
+ value: 0.8885714285714286
221
+ name: Cosine Recall@10
222
+ - type: cosine_ndcg@10
223
+ value: 0.7890567420578879
224
+ name: Cosine Ndcg@10
225
+ - type: cosine_mrr@10
226
+ value: 0.7567375283446709
227
+ name: Cosine Mrr@10
228
+ - type: cosine_map@10
229
+ value: 0.7567375283446711
230
+ name: Cosine Map@10
231
+ - task:
232
+ type: information-retrieval
233
+ name: Information Retrieval
234
+ dataset:
235
+ name: dim 128
236
+ type: dim_128
237
+ metrics:
238
+ - type: cosine_accuracy@1
239
+ value: 0.6571428571428571
240
+ name: Cosine Accuracy@1
241
+ - type: cosine_accuracy@3
242
+ value: 0.8071428571428572
243
+ name: Cosine Accuracy@3
244
+ - type: cosine_accuracy@5
245
+ value: 0.8457142857142858
246
+ name: Cosine Accuracy@5
247
+ - type: cosine_accuracy@10
248
+ value: 0.8742857142857143
249
+ name: Cosine Accuracy@10
250
+ - type: cosine_precision@1
251
+ value: 0.6571428571428571
252
+ name: Cosine Precision@1
253
+ - type: cosine_precision@3
254
+ value: 0.26904761904761904
255
+ name: Cosine Precision@3
256
+ - type: cosine_precision@5
257
+ value: 0.16914285714285712
258
+ name: Cosine Precision@5
259
+ - type: cosine_precision@10
260
+ value: 0.08742857142857141
261
+ name: Cosine Precision@10
262
+ - type: cosine_recall@1
263
+ value: 0.6571428571428571
264
+ name: Cosine Recall@1
265
+ - type: cosine_recall@3
266
+ value: 0.8071428571428572
267
+ name: Cosine Recall@3
268
+ - type: cosine_recall@5
269
+ value: 0.8457142857142858
270
+ name: Cosine Recall@5
271
+ - type: cosine_recall@10
272
+ value: 0.8742857142857143
273
+ name: Cosine Recall@10
274
+ - type: cosine_ndcg@10
275
+ value: 0.7723888716536037
276
+ name: Cosine Ndcg@10
277
+ - type: cosine_mrr@10
278
+ value: 0.7390544217687071
279
+ name: Cosine Mrr@10
280
+ - type: cosine_map@10
281
+ value: 0.7390544217687074
282
+ name: Cosine Map@10
283
+ - task:
284
+ type: information-retrieval
285
+ name: Information Retrieval
286
+ dataset:
287
+ name: dim 64
288
+ type: dim_64
289
+ metrics:
290
+ - type: cosine_accuracy@1
291
+ value: 0.6157142857142858
292
+ name: Cosine Accuracy@1
293
+ - type: cosine_accuracy@3
294
+ value: 0.7685714285714286
295
+ name: Cosine Accuracy@3
296
+ - type: cosine_accuracy@5
297
+ value: 0.8171428571428572
298
+ name: Cosine Accuracy@5
299
+ - type: cosine_accuracy@10
300
+ value: 0.8557142857142858
301
+ name: Cosine Accuracy@10
302
+ - type: cosine_precision@1
303
+ value: 0.6157142857142858
304
+ name: Cosine Precision@1
305
+ - type: cosine_precision@3
306
+ value: 0.2561904761904762
307
+ name: Cosine Precision@3
308
+ - type: cosine_precision@5
309
+ value: 0.1634285714285714
310
+ name: Cosine Precision@5
311
+ - type: cosine_precision@10
312
+ value: 0.08557142857142856
313
+ name: Cosine Precision@10
314
+ - type: cosine_recall@1
315
+ value: 0.6157142857142858
316
+ name: Cosine Recall@1
317
+ - type: cosine_recall@3
318
+ value: 0.7685714285714286
319
+ name: Cosine Recall@3
320
+ - type: cosine_recall@5
321
+ value: 0.8171428571428572
322
+ name: Cosine Recall@5
323
+ - type: cosine_recall@10
324
+ value: 0.8557142857142858
325
+ name: Cosine Recall@10
326
+ - type: cosine_ndcg@10
327
+ value: 0.7405386424360808
328
+ name: Cosine Ndcg@10
329
+ - type: cosine_mrr@10
330
+ value: 0.7031672335600904
331
+ name: Cosine Mrr@10
332
+ - type: cosine_map@10
333
+ value: 0.7031672335600907
334
+ name: Cosine Map@10
335
+ ---
336
+
337
+ # BGE base Financial Matryoshka
338
+
339
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
340
+
341
+ ## Model Details
342
+
343
+ ### Model Description
344
+ - **Model Type:** Sentence Transformer
345
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
346
+ - **Maximum Sequence Length:** 512 tokens
347
+ - **Output Dimensionality:** 768 tokens
348
+ - **Similarity Function:** Cosine Similarity
349
+ <!-- - **Training Dataset:** Unknown -->
350
+ - **Language:** en
351
+ - **License:** apache-2.0
352
+
353
+ ### Model Sources
354
+
355
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
356
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
357
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
358
+
359
+ ### Full Model Architecture
360
+
361
+ ```
362
+ SentenceTransformer(
363
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
364
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
365
+ (2): Normalize()
366
+ )
367
+ ```
368
+
369
+ ## Usage
370
+
371
+ ### Direct Usage (Sentence Transformers)
372
+
373
+ First install the Sentence Transformers library:
374
+
375
+ ```bash
376
+ pip install -U sentence-transformers
377
+ ```
378
+
379
+ Then you can load this model and run inference.
380
+ ```python
381
+ from sentence_transformers import SentenceTransformer
382
+
383
+ # Download from the 🤗 Hub
384
+ model = SentenceTransformer("Sailesh9999/bge-base-financial-matryoshka_3")
385
+ # Run inference
386
+ sentences = [
387
+ 'Chipotle retains an independent third-party compensation consultant each year to conduct a pay equity analysis of its U.S. and Canadian workforce, including factors of pay such as grade level, tenure in role, and external market conditions like geographic location, to ensure consistency and equitable treatment among employees.',
388
+ 'How does Chipotle ensure pay equity among its employees?',
389
+ 'How can one locate information on legal proceedings within the Consolidated Financial Statements?',
390
+ ]
391
+ embeddings = model.encode(sentences)
392
+ print(embeddings.shape)
393
+ # [3, 768]
394
+
395
+ # Get the similarity scores for the embeddings
396
+ similarities = model.similarity(embeddings, embeddings)
397
+ print(similarities.shape)
398
+ # [3, 3]
399
+ ```
400
+
401
+ <!--
402
+ ### Direct Usage (Transformers)
403
+
404
+ <details><summary>Click to see the direct usage in Transformers</summary>
405
+
406
+ </details>
407
+ -->
408
+
409
+ <!--
410
+ ### Downstream Usage (Sentence Transformers)
411
+
412
+ You can finetune this model on your own dataset.
413
+
414
+ <details><summary>Click to expand</summary>
415
+
416
+ </details>
417
+ -->
418
+
419
+ <!--
420
+ ### Out-of-Scope Use
421
+
422
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
423
+ -->
424
+
425
+ ## Evaluation
426
+
427
+ ### Metrics
428
+
429
+ #### Information Retrieval
430
+ * Dataset: `dim_768`
431
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
432
+
433
+ | Metric | Value |
434
+ |:--------------------|:-----------|
435
+ | cosine_accuracy@1 | 0.6871 |
436
+ | cosine_accuracy@3 | 0.8214 |
437
+ | cosine_accuracy@5 | 0.8586 |
438
+ | cosine_accuracy@10 | 0.9 |
439
+ | cosine_precision@1 | 0.6871 |
440
+ | cosine_precision@3 | 0.2738 |
441
+ | cosine_precision@5 | 0.1717 |
442
+ | cosine_precision@10 | 0.09 |
443
+ | cosine_recall@1 | 0.6871 |
444
+ | cosine_recall@3 | 0.8214 |
445
+ | cosine_recall@5 | 0.8586 |
446
+ | cosine_recall@10 | 0.9 |
447
+ | cosine_ndcg@10 | 0.7967 |
448
+ | cosine_mrr@10 | 0.7634 |
449
+ | **cosine_map@10** | **0.7634** |
450
+
451
+ #### Information Retrieval
452
+ * Dataset: `dim_512`
453
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
454
+
455
+ | Metric | Value |
456
+ |:--------------------|:----------|
457
+ | cosine_accuracy@1 | 0.6857 |
458
+ | cosine_accuracy@3 | 0.82 |
459
+ | cosine_accuracy@5 | 0.8557 |
460
+ | cosine_accuracy@10 | 0.9014 |
461
+ | cosine_precision@1 | 0.6857 |
462
+ | cosine_precision@3 | 0.2733 |
463
+ | cosine_precision@5 | 0.1711 |
464
+ | cosine_precision@10 | 0.0901 |
465
+ | cosine_recall@1 | 0.6857 |
466
+ | cosine_recall@3 | 0.82 |
467
+ | cosine_recall@5 | 0.8557 |
468
+ | cosine_recall@10 | 0.9014 |
469
+ | cosine_ndcg@10 | 0.7952 |
470
+ | cosine_mrr@10 | 0.761 |
471
+ | **cosine_map@10** | **0.761** |
472
+
473
+ #### Information Retrieval
474
+ * Dataset: `dim_256`
475
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
476
+
477
+ | Metric | Value |
478
+ |:--------------------|:-----------|
479
+ | cosine_accuracy@1 | 0.6814 |
480
+ | cosine_accuracy@3 | 0.8171 |
481
+ | cosine_accuracy@5 | 0.8571 |
482
+ | cosine_accuracy@10 | 0.8886 |
483
+ | cosine_precision@1 | 0.6814 |
484
+ | cosine_precision@3 | 0.2724 |
485
+ | cosine_precision@5 | 0.1714 |
486
+ | cosine_precision@10 | 0.0889 |
487
+ | cosine_recall@1 | 0.6814 |
488
+ | cosine_recall@3 | 0.8171 |
489
+ | cosine_recall@5 | 0.8571 |
490
+ | cosine_recall@10 | 0.8886 |
491
+ | cosine_ndcg@10 | 0.7891 |
492
+ | cosine_mrr@10 | 0.7567 |
493
+ | **cosine_map@10** | **0.7567** |
494
+
495
+ #### Information Retrieval
496
+ * Dataset: `dim_128`
497
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
498
+
499
+ | Metric | Value |
500
+ |:--------------------|:-----------|
501
+ | cosine_accuracy@1 | 0.6571 |
502
+ | cosine_accuracy@3 | 0.8071 |
503
+ | cosine_accuracy@5 | 0.8457 |
504
+ | cosine_accuracy@10 | 0.8743 |
505
+ | cosine_precision@1 | 0.6571 |
506
+ | cosine_precision@3 | 0.269 |
507
+ | cosine_precision@5 | 0.1691 |
508
+ | cosine_precision@10 | 0.0874 |
509
+ | cosine_recall@1 | 0.6571 |
510
+ | cosine_recall@3 | 0.8071 |
511
+ | cosine_recall@5 | 0.8457 |
512
+ | cosine_recall@10 | 0.8743 |
513
+ | cosine_ndcg@10 | 0.7724 |
514
+ | cosine_mrr@10 | 0.7391 |
515
+ | **cosine_map@10** | **0.7391** |
516
+
517
+ #### Information Retrieval
518
+ * Dataset: `dim_64`
519
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
520
+
521
+ | Metric | Value |
522
+ |:--------------------|:-----------|
523
+ | cosine_accuracy@1 | 0.6157 |
524
+ | cosine_accuracy@3 | 0.7686 |
525
+ | cosine_accuracy@5 | 0.8171 |
526
+ | cosine_accuracy@10 | 0.8557 |
527
+ | cosine_precision@1 | 0.6157 |
528
+ | cosine_precision@3 | 0.2562 |
529
+ | cosine_precision@5 | 0.1634 |
530
+ | cosine_precision@10 | 0.0856 |
531
+ | cosine_recall@1 | 0.6157 |
532
+ | cosine_recall@3 | 0.7686 |
533
+ | cosine_recall@5 | 0.8171 |
534
+ | cosine_recall@10 | 0.8557 |
535
+ | cosine_ndcg@10 | 0.7405 |
536
+ | cosine_mrr@10 | 0.7032 |
537
+ | **cosine_map@10** | **0.7032** |
538
+
539
+ <!--
540
+ ## Bias, Risks and Limitations
541
+
542
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
543
+ -->
544
+
545
+ <!--
546
+ ### Recommendations
547
+
548
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
549
+ -->
550
+
551
+ ## Training Details
552
+
553
+ ### Training Dataset
554
+
555
+ #### Unnamed Dataset
556
+
557
+
558
+ * Size: 6,300 training samples
559
+ * Columns: <code>positive</code> and <code>anchor</code>
560
+ * Approximate statistics based on the first 1000 samples:
561
+ | | positive | anchor |
562
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
563
+ | type | string | string |
564
+ | details | <ul><li>min: 7 tokens</li><li>mean: 46.55 tokens</li><li>max: 439 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.43 tokens</li><li>max: 46 tokens</li></ul> |
565
+ * Samples:
566
+ | positive | anchor |
567
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------|
568
+ | <code>Americas | $ | 7,631,647 | | | $ | 6,817,454 | | 79.3 | % | 84.1 | %</code> | <code>What was the proportion of Americas' net revenue to the company's total net revenue in 2023, and how did it change from 2022?</code> |
569
+ | <code>Item 1 Business typically includes detailed information about the organization's operations, the nature of the business, and its strategic direction.</code> | <code>What is the title of the section that potentially discusses the operations or nature of a business in a document?</code> |
570
+ | <code>Operating expenses as a percentage of total revenues decreased to 15.3% in 2023 compared to 15.9% in 2022.</code> | <code>What was the operating expenses as a percentage of total revenues in 2023?</code> |
571
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
572
+ ```json
573
+ {
574
+ "loss": "MultipleNegativesRankingLoss",
575
+ "matryoshka_dims": [
576
+ 768,
577
+ 512,
578
+ 256,
579
+ 128,
580
+ 64
581
+ ],
582
+ "matryoshka_weights": [
583
+ 1,
584
+ 1,
585
+ 1,
586
+ 1,
587
+ 1
588
+ ],
589
+ "n_dims_per_step": -1
590
+ }
591
+ ```
592
+
593
+ ### Training Hyperparameters
594
+ #### Non-Default Hyperparameters
595
+
596
+ - `eval_strategy`: epoch
597
+ - `per_device_train_batch_size`: 32
598
+ - `per_device_eval_batch_size`: 16
599
+ - `gradient_accumulation_steps`: 16
600
+ - `learning_rate`: 1e-05
601
+ - `num_train_epochs`: 4
602
+ - `lr_scheduler_type`: cosine
603
+ - `warmup_ratio`: 0.1
604
+ - `bf16`: True
605
+ - `tf32`: True
606
+ - `load_best_model_at_end`: True
607
+ - `optim`: adamw_torch_fused
608
+ - `batch_sampler`: no_duplicates
609
+
610
+ #### All Hyperparameters
611
+ <details><summary>Click to expand</summary>
612
+
613
+ - `overwrite_output_dir`: False
614
+ - `do_predict`: False
615
+ - `eval_strategy`: epoch
616
+ - `prediction_loss_only`: True
617
+ - `per_device_train_batch_size`: 32
618
+ - `per_device_eval_batch_size`: 16
619
+ - `per_gpu_train_batch_size`: None
620
+ - `per_gpu_eval_batch_size`: None
621
+ - `gradient_accumulation_steps`: 16
622
+ - `eval_accumulation_steps`: None
623
+ - `learning_rate`: 1e-05
624
+ - `weight_decay`: 0.0
625
+ - `adam_beta1`: 0.9
626
+ - `adam_beta2`: 0.999
627
+ - `adam_epsilon`: 1e-08
628
+ - `max_grad_norm`: 1.0
629
+ - `num_train_epochs`: 4
630
+ - `max_steps`: -1
631
+ - `lr_scheduler_type`: cosine
632
+ - `lr_scheduler_kwargs`: {}
633
+ - `warmup_ratio`: 0.1
634
+ - `warmup_steps`: 0
635
+ - `log_level`: passive
636
+ - `log_level_replica`: warning
637
+ - `log_on_each_node`: True
638
+ - `logging_nan_inf_filter`: True
639
+ - `save_safetensors`: True
640
+ - `save_on_each_node`: False
641
+ - `save_only_model`: False
642
+ - `restore_callback_states_from_checkpoint`: False
643
+ - `no_cuda`: False
644
+ - `use_cpu`: False
645
+ - `use_mps_device`: False
646
+ - `seed`: 42
647
+ - `data_seed`: None
648
+ - `jit_mode_eval`: False
649
+ - `use_ipex`: False
650
+ - `bf16`: True
651
+ - `fp16`: False
652
+ - `fp16_opt_level`: O1
653
+ - `half_precision_backend`: auto
654
+ - `bf16_full_eval`: False
655
+ - `fp16_full_eval`: False
656
+ - `tf32`: True
657
+ - `local_rank`: 0
658
+ - `ddp_backend`: None
659
+ - `tpu_num_cores`: None
660
+ - `tpu_metrics_debug`: False
661
+ - `debug`: []
662
+ - `dataloader_drop_last`: False
663
+ - `dataloader_num_workers`: 0
664
+ - `dataloader_prefetch_factor`: None
665
+ - `past_index`: -1
666
+ - `disable_tqdm`: False
667
+ - `remove_unused_columns`: True
668
+ - `label_names`: None
669
+ - `load_best_model_at_end`: True
670
+ - `ignore_data_skip`: False
671
+ - `fsdp`: []
672
+ - `fsdp_min_num_params`: 0
673
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
674
+ - `fsdp_transformer_layer_cls_to_wrap`: None
675
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
676
+ - `deepspeed`: None
677
+ - `label_smoothing_factor`: 0.0
678
+ - `optim`: adamw_torch_fused
679
+ - `optim_args`: None
680
+ - `adafactor`: False
681
+ - `group_by_length`: False
682
+ - `length_column_name`: length
683
+ - `ddp_find_unused_parameters`: None
684
+ - `ddp_bucket_cap_mb`: None
685
+ - `ddp_broadcast_buffers`: False
686
+ - `dataloader_pin_memory`: True
687
+ - `dataloader_persistent_workers`: False
688
+ - `skip_memory_metrics`: True
689
+ - `use_legacy_prediction_loop`: False
690
+ - `push_to_hub`: False
691
+ - `resume_from_checkpoint`: None
692
+ - `hub_model_id`: None
693
+ - `hub_strategy`: every_save
694
+ - `hub_private_repo`: False
695
+ - `hub_always_push`: False
696
+ - `gradient_checkpointing`: False
697
+ - `gradient_checkpointing_kwargs`: None
698
+ - `include_inputs_for_metrics`: False
699
+ - `eval_do_concat_batches`: True
700
+ - `fp16_backend`: auto
701
+ - `push_to_hub_model_id`: None
702
+ - `push_to_hub_organization`: None
703
+ - `mp_parameters`:
704
+ - `auto_find_batch_size`: False
705
+ - `full_determinism`: False
706
+ - `torchdynamo`: None
707
+ - `ray_scope`: last
708
+ - `ddp_timeout`: 1800
709
+ - `torch_compile`: False
710
+ - `torch_compile_backend`: None
711
+ - `torch_compile_mode`: None
712
+ - `dispatch_batches`: None
713
+ - `split_batches`: None
714
+ - `include_tokens_per_second`: False
715
+ - `include_num_input_tokens_seen`: False
716
+ - `neftune_noise_alpha`: None
717
+ - `optim_target_modules`: None
718
+ - `batch_eval_metrics`: False
719
+ - `batch_sampler`: no_duplicates
720
+ - `multi_dataset_batch_sampler`: proportional
721
+
722
+ </details>
723
+
724
+ ### Training Logs
725
+ | Epoch | Step | Training Loss | dim_128_cosine_map@10 | dim_256_cosine_map@10 | dim_512_cosine_map@10 | dim_64_cosine_map@10 | dim_768_cosine_map@10 |
726
+ |:----------:|:------:|:-------------:|:---------------------:|:---------------------:|:---------------------:|:--------------------:|:---------------------:|
727
+ | 0.8122 | 10 | 1.7427 | - | - | - | - | - |
728
+ | 0.9746 | 12 | - | 0.7118 | 0.7377 | 0.7411 | 0.6774 | 0.7440 |
729
+ | 1.6244 | 20 | 0.9354 | - | - | - | - | - |
730
+ | 1.9492 | 24 | - | 0.7353 | 0.7544 | 0.7562 | 0.7008 | 0.7632 |
731
+ | 2.4365 | 30 | 0.674 | - | - | - | - | - |
732
+ | 2.9239 | 36 | - | 0.7382 | 0.7569 | 0.7612 | 0.7018 | 0.7625 |
733
+ | 3.2487 | 40 | 0.5862 | - | - | - | - | - |
734
+ | **3.8985** | **48** | **-** | **0.7391** | **0.7567** | **0.761** | **0.7032** | **0.7634** |
735
+
736
+ * The bold row denotes the saved checkpoint.
737
+
738
+ ### Framework Versions
739
+ - Python: 3.9.18
740
+ - Sentence Transformers: 3.0.1
741
+ - Transformers: 4.41.2
742
+ - PyTorch: 2.1.2+cu121
743
+ - Accelerate: 0.29.3
744
+ - Datasets: 2.19.1
745
+ - Tokenizers: 0.19.1
746
+
747
+ ## Citation
748
+
749
+ ### BibTeX
750
+
751
+ #### Sentence Transformers
752
+ ```bibtex
753
+ @inproceedings{reimers-2019-sentence-bert,
754
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
755
+ author = "Reimers, Nils and Gurevych, Iryna",
756
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
757
+ month = "11",
758
+ year = "2019",
759
+ publisher = "Association for Computational Linguistics",
760
+ url = "https://arxiv.org/abs/1908.10084",
761
+ }
762
+ ```
763
+
764
+ #### MatryoshkaLoss
765
+ ```bibtex
766
+ @misc{kusupati2024matryoshka,
767
+ title={Matryoshka Representation Learning},
768
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
769
+ year={2024},
770
+ eprint={2205.13147},
771
+ archivePrefix={arXiv},
772
+ primaryClass={cs.LG}
773
+ }
774
+ ```
775
+
776
+ #### MultipleNegativesRankingLoss
777
+ ```bibtex
778
+ @misc{henderson2017efficient,
779
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
780
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
781
+ year={2017},
782
+ eprint={1705.00652},
783
+ archivePrefix={arXiv},
784
+ primaryClass={cs.CL}
785
+ }
786
+ ```
787
+
788
+ <!--
789
+ ## Glossary
790
+
791
+ *Clearly define terms in order to be accessible across audiences.*
792
+ -->
793
+
794
+ <!--
795
+ ## Model Card Authors
796
+
797
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
798
+ -->
799
+
800
+ <!--
801
+ ## Model Card Contact
802
+
803
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
804
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2874b671dffedaca654cdb27d9c283d2119c0ea02f8eee7544376490bbcda5ec
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff