File size: 2,488 Bytes
b57c49e 0b6510f b57c49e 4e4e8b6 b57c49e 9d2387f b57c49e 976c2f1 9d2387f b57c49e 976c2f1 b57c49e 45f4ee1 b57c49e 976c2f1 45f4ee1 976c2f1 45f4ee1 b57c49e 0b6510f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: mit
base_model: numind/entity-recognition-general-sota-v1
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: entity-recognition-general-sota-v1-finetuned-ner-X
results: []
datasets:
- Babelscape/multinerd
language:
- en
library_name: transformers
pipeline_tag: token-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
## Model description
# entity-recognition-general-sota-v1-finetuned-ner-X
This model is a fine-tuned version of [numind/entity-recognition-general-sota-v1](https://huggingface.co/numind/entity-recognition-general-sota-v1) on an Babelscape/MultiNerd dataset.
It achieves the following results on the validation set:
- Loss: 0.0228
- Precision: 0.9472
- Recall: 0.9621
- F1: 0.9546
- Accuracy: 0.9915
## Training and evaluation data
The dataset if filtered on english language and sampled first 1M on train and 100k on validation.
further filtered with data containing atleast one tag from labels2ids mentioned below.
Train data - 110723 items
Validation data - 13126 items
Trained on below listed tags from the MultiNERD dataset.
labels2ids_B = {
"O": 0,
"B-PER": 1,
"I-PER": 2,
"B-ORG": 3,
"I-ORG": 4,
"B-LOC": 5,
"I-LOC": 6,
"B-ANIM": 7,
"I-ANIM": 8,
"B-DIS": 9,
"I-DIS": 10
}
## Training procedure
HF Trainer module
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 35
- eval_batch_size: 35
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training & Test set evaluation results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0214 | 1.0 | 3164 | 0.0228 | 0.9472 | 0.9621 | 0.9546 | 0.9915 |
Test set Evaluation results:
{
'eval_loss': 0.017866812646389008,
'eval_precision': 0.9557654500384648,
'eval_recall': 0.9739558381603589,
'eval_accuracy': 0.9931328078645237,
'eval_runtime': 109.6919,
'eval_samples_per_second': 269.045,
'eval_steps_per_second': 33.631
}
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0 |