--- license: mit base_model: numind/entity-recognition-general-sota-v1 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: entity-recognition-general-sota-v1-finetuned-ner-X results: [] datasets: - Babelscape/multinerd language: - en library_name: transformers pipeline_tag: token-classification --- ## Model description # entity-recognition-general-sota-v1-finetuned-ner-X This model is a fine-tuned version of [numind/entity-recognition-general-sota-v1](https://huggingface.co/numind/entity-recognition-general-sota-v1) on an Babelscape/MultiNerd dataset. It achieves the following results on the validation set: - Loss: 0.0228 - Precision: 0.9472 - Recall: 0.9621 - F1: 0.9546 - Accuracy: 0.9915 ## Training and evaluation data The dataset if filtered on english language and sampled first 1M on train and 100k on validation. further filtered with data containing atleast one tag from labels2ids mentioned below. Train data - 110723 items Validation data - 13126 items Trained on below listed tags from the MultiNERD dataset. labels2ids_B = { "O": 0, "B-PER": 1, "I-PER": 2, "B-ORG": 3, "I-ORG": 4, "B-LOC": 5, "I-LOC": 6, "B-ANIM": 7, "I-ANIM": 8, "B-DIS": 9, "I-DIS": 10 } ## Training procedure HF Trainer module ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 35 - eval_batch_size: 35 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training & Test set evaluation results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0214 | 1.0 | 3164 | 0.0228 | 0.9472 | 0.9621 | 0.9546 | 0.9915 | Test set Evaluation results: { 'eval_loss': 0.017866812646389008, 'eval_precision': 0.9557654500384648, 'eval_recall': 0.9739558381603589, 'eval_accuracy': 0.9931328078645237, 'eval_runtime': 109.6919, 'eval_samples_per_second': 269.045, 'eval_steps_per_second': 33.631 } ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0