yuewang-sf
commited on
Commit
·
7fa23ec
1
Parent(s):
48dca45
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: BSD-3
|
3 |
+
tags:
|
4 |
+
- codet5
|
5 |
+
datasets:
|
6 |
+
- code_search_net
|
7 |
+
inference: true
|
8 |
+
---
|
9 |
+
|
10 |
+
# CodeT5 for code summarization (base-sized model)
|
11 |
+
|
12 |
+
[CodeT5-base](https://huggingface.co/Salesforce/codet5-base) model fine-tuned on CodeSearchNet data
|
13 |
+
from [Husain et al., 2019](https://arxiv.org/abs/1909.09436) in a multi-lingual training setting (
|
14 |
+
Ruby/JavaScript/Go/Python/Java/PHP) for code summarization. It was introduced in this EMNLP 2021
|
15 |
+
paper [CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation](https://arxiv.org/abs/2109.00859)
|
16 |
+
by Yue Wang, Weishi Wang, Shafiq Joty, Steven C.H. Hoi. Please check out more
|
17 |
+
at [this repository](https://github.com/salesforce/CodeT5).
|
18 |
+
|
19 |
+
## How to use
|
20 |
+
|
21 |
+
Here is how to use this model:
|
22 |
+
|
23 |
+
```python
|
24 |
+
from transformers import RobertaTokenizer, T5ForConditionalGeneration
|
25 |
+
|
26 |
+
if __name__ == '__main__':
|
27 |
+
tokenizer = RobertaTokenizer.from_pretrained('Salesforce/codet5-base')
|
28 |
+
model = T5ForConditionalGeneration.from_pretrained('Salesforce/codet5-base-multi-sum')
|
29 |
+
|
30 |
+
text = """def svg_to_image(string, size=None):
|
31 |
+
if isinstance(string, unicode):
|
32 |
+
string = string.encode('utf-8')
|
33 |
+
renderer = QtSvg.QSvgRenderer(QtCore.QByteArray(string))
|
34 |
+
if not renderer.isValid():
|
35 |
+
raise ValueError('Invalid SVG data.')
|
36 |
+
if size is None:
|
37 |
+
size = renderer.defaultSize()
|
38 |
+
image = QtGui.QImage(size, QtGui.QImage.Format_ARGB32)
|
39 |
+
painter = QtGui.QPainter(image)
|
40 |
+
renderer.render(painter)
|
41 |
+
return image"""
|
42 |
+
|
43 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
44 |
+
|
45 |
+
generated_ids = model.generate(input_ids, max_length=20)
|
46 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
47 |
+
# this prints: "Convert a SVG string to a QImage."
|
48 |
+
```
|
49 |
+
|
50 |
+
## Fine-tuning data
|
51 |
+
|
52 |
+
We employ the filtered version of CodeSearchNet data
|
53 |
+
from [CodeXGLUE](https://github.com/microsoft/CodeXGLUE/tree/main/Code-Text/code-to-text) benchmark for fine-tuning on
|
54 |
+
code summarization. The data is tokenized with our pre-trained code-specific BPE (Byte-Pair Encoding) tokenizer. One can
|
55 |
+
prepare text (or code) for the model using RobertaTokenizer, with the vocab files
|
56 |
+
from [codet5-base](https://huggingface.co/Salesforce/codet5-base).
|
57 |
+
|
58 |
+
### Data Statistic
|
59 |
+
|
60 |
+
| Programming Language | Training | Dev | Test |
|
61 |
+
| :------------------- | :------: | :----: | :----: |
|
62 |
+
| Python | 251,820 | 13,914 | 14,918 |
|
63 |
+
| PHP | 241,241 | 12,982 | 14,014 |
|
64 |
+
| Go | 167,288 | 7,325 | 8,122 |
|
65 |
+
| Java | 164,923 | 5,183 | 10,955 |
|
66 |
+
| JavaScript | 58,025 | 3,885 | 3,291 |
|
67 |
+
| Ruby | 24,927 | 1,400 | 1,261 |
|
68 |
+
|
69 |
+
## Training procedure
|
70 |
+
|
71 |
+
We fine-tune codet5-base on six PLs (Ruby/JavaScript/Go/Python/Java/PHP) in the multi-task learning setting. We employ
|
72 |
+
balanced sampling to avoid biasing towards high-resource tasks. Please refer to
|
73 |
+
the [paper](https://arxiv.org/abs/2109.00859) for more details.
|
74 |
+
|
75 |
+
## Evaluation results
|
76 |
+
|
77 |
+
Unlike the paper allowing to select different best checkpoints for different tasks, here we employ one checkpoint for
|
78 |
+
all PLs. Besides, we remove the prefix to specify the PL in training and inference. The results on the test set are shown as below:
|
79 |
+
|
80 |
+
| Model | Ruby | Javascript | Go | Python | Java | PHP | Overall |
|
81 |
+
| ----------- | :-------: | :--------: | :-------: | :-------: | :-------: | :-------: | :-------: |
|
82 |
+
| Seq2Seq | 9.64 | 10.21 | 13.98 | 15.93 | 15.09 | 21.08 | 14.32 |
|
83 |
+
| Transformer | 11.18 | 11.59 | 16.38 | 15.81 | 16.26 | 22.12 | 15.56 |
|
84 |
+
| [RoBERTa](https://arxiv.org/pdf/1907.11692.pdf) | 11.17 | 11.90 | 17.72 | 18.14 | 16.47 | 24.02 | 16.57 |
|
85 |
+
| [CodeBERT](https://arxiv.org/pdf/2002.08155.pdf) | 12.16 | 14.90 | 18.07 | 19.06 | 17.65 | 25.16 | 17.83 |
|
86 |
+
| [PLBART](https://arxiv.org/pdf/2002.08155.pdf) | 14.11 |15.56 | 18.91 | 19.30 | 18.45 | 23.58 | 18.32 |
|
87 |
+
| [CodeT5-small](https://arxiv.org/abs/2109.00859) |14.87 | 15.32 | 19.25 | 20.04 | 19.92 | 25.46 | 19.14 |
|
88 |
+
| [CodeT5-base](https://arxiv.org/abs/2109.00859) | 15.24 | 16.16 | 19.56 | 20.01 | 20.31 | 26.03 | 19.55 |
|
89 |
+
| [CodeT5-base-multi-sum](https://arxiv.org/abs/2109.00859) | 15.24 | 16.18 | 19.95 | 20.42 | 20.26 | 26.10 | 19.69 |
|
90 |
+
|
91 |
+
### BibTeX entry and citation info
|
92 |
+
|
93 |
+
```bibtex
|
94 |
+
@inproceedings{
|
95 |
+
wang2021codet5,
|
96 |
+
title={CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation},
|
97 |
+
author={Yue Wang, Weishi Wang, Shafiq Joty, Steven C.H. Hoi},
|
98 |
+
booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021},
|
99 |
+
year={2021},
|
100 |
+
}
|
101 |
+
```
|