--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-tiny-hindi3_test results: [] --- # whisper-tiny-hindi3_test This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4252 - Wer: 52.6981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.75e-05 - train_batch_size: 16 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 30 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.1072 | 0.2 | 20 | 0.8412 | 86.0034 | | 0.6316 | 0.4 | 40 | 0.5764 | 66.9477 | | 0.5548 | 0.6 | 60 | 0.5071 | 63.4064 | | 0.5014 | 0.8 | 80 | 0.4606 | 55.3120 | | 0.459 | 1.0 | 100 | 0.4252 | 52.6981 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1