Samee-ur commited on
Commit
f9b1d7e
1 Parent(s): 57b71e2

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - merge
5
+ - mergekit
6
+ - lazymergekit
7
+ - samir-fama/SamirGPT-v1
8
+ - abacusai/Slerp-CM-mist-dpo
9
+ - EmbeddedLLM/Mistral-7B-Merge-14-v0.2
10
+ base_model:
11
+ - samir-fama/SamirGPT-v1
12
+ - abacusai/Slerp-CM-mist-dpo
13
+ - EmbeddedLLM/Mistral-7B-Merge-14-v0.2
14
+ ---
15
+
16
+ # DareTIES-7B
17
+
18
+ DareTIES-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
19
+ * [samir-fama/SamirGPT-v1](https://huggingface.co/samir-fama/SamirGPT-v1)
20
+ * [abacusai/Slerp-CM-mist-dpo](https://huggingface.co/abacusai/Slerp-CM-mist-dpo)
21
+ * [EmbeddedLLM/Mistral-7B-Merge-14-v0.2](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.2)
22
+
23
+ ## 🧩 Configuration
24
+
25
+ ```yaml
26
+ models:
27
+ - model: mistralai/Mistral-7B-v0.1
28
+ # No parameters necessary for base model
29
+ - model: samir-fama/SamirGPT-v1
30
+ parameters:
31
+ density: 0.53
32
+ weight: 0.4
33
+ - model: abacusai/Slerp-CM-mist-dpo
34
+ parameters:
35
+ density: 0.53
36
+ weight: 0.3
37
+ - model: EmbeddedLLM/Mistral-7B-Merge-14-v0.2
38
+ parameters:
39
+ density: 0.53
40
+ weight: 0.3
41
+ merge_method: dare_ties
42
+ base_model: mistralai/Mistral-7B-v0.1
43
+ parameters:
44
+ int8_mask: true
45
+ dtype: bfloat16
46
+ ```
47
+
48
+ ## 💻 Usage
49
+
50
+ ```python
51
+ !pip install -qU transformers accelerate
52
+
53
+ from transformers import AutoTokenizer
54
+ import transformers
55
+ import torch
56
+
57
+ model = "Samee-ur/DareTIES-7B"
58
+ messages = [{"role": "user", "content": "What is a large language model?"}]
59
+
60
+ tokenizer = AutoTokenizer.from_pretrained(model)
61
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
62
+ pipeline = transformers.pipeline(
63
+ "text-generation",
64
+ model=model,
65
+ torch_dtype=torch.float16,
66
+ device_map="auto",
67
+ )
68
+
69
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
70
+ print(outputs[0]["generated_text"])
71
+ ```