File size: 2,613 Bytes
718be7e
 
 
 
 
 
 
 
77de434
718be7e
 
 
 
 
 
 
 
 
 
 
 
1d15b75
 
718be7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d15b75
718be7e
 
 
26b6c38
 
718be7e
 
 
1d15b75
718be7e
 
 
 
 
1d15b75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
718be7e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
base_model: facebook/hubert-large-ls960-ft
model-index:
- name: hubert-large-ls960-ft-finetuned-gtzan
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hubert-large-ls960-ft-finetuned-gtzan

This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7096
- Accuracy: 0.85

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 18

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2623        | 1.0   | 56   | 2.2399          | 0.21     |
| 1.881         | 1.99  | 112  | 1.7105          | 0.41     |
| 1.5793        | 2.99  | 168  | 1.6203          | 0.46     |
| 1.3018        | 4.0   | 225  | 1.3824          | 0.52     |
| 1.0219        | 5.0   | 281  | 0.9899          | 0.66     |
| 0.9047        | 5.99  | 337  | 0.8812          | 0.74     |
| 0.8353        | 6.99  | 393  | 0.7629          | 0.78     |
| 0.659         | 8.0   | 450  | 0.9674          | 0.71     |
| 0.645         | 9.0   | 506  | 0.8953          | 0.74     |
| 0.6233        | 9.99  | 562  | 0.6638          | 0.8      |
| 0.4155        | 10.99 | 618  | 0.6323          | 0.81     |
| 0.2689        | 12.0  | 675  | 0.5423          | 0.83     |
| 0.3714        | 13.0  | 731  | 0.6770          | 0.83     |
| 0.0692        | 13.99 | 787  | 0.6260          | 0.83     |
| 0.0778        | 14.99 | 843  | 0.5801          | 0.85     |
| 0.187         | 16.0  | 900  | 0.6722          | 0.83     |
| 0.1469        | 17.0  | 956  | 0.7473          | 0.85     |
| 0.1052        | 17.92 | 1008 | 0.7096          | 0.85     |


### Framework versions

- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3