File size: 1,980 Bytes
5f484e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
language:
- fr
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- facebook/voxpopuli
metrics:
- wer
model-index:
- name: whisper-large-v2-french
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: VOXPOPULI
type: facebook/voxpopuli
config: fr
split: test
args: fr
metrics:
- name: Wer
type: wer
value: 0.10414829788606697
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large-v2-french
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the VOXPOPULI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2468
- Wer Ortho: 0.1405
- Wer: 0.1041
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
| 0.1851 | 1.0 | 2207 | 0.2349 | 0.1399 | 0.1044 |
| 0.1318 | 2.0 | 4415 | 0.2312 | 0.1377 | 0.1015 |
| 0.0921 | 3.0 | 6621 | 0.2468 | 0.1405 | 0.1041 |
### Framework versions
- Transformers 4.30.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|