--- language: - fr license: apache-2.0 tags: - generated_from_trainer datasets: - facebook/voxpopuli metrics: - wer model-index: - name: whisper-large-v2-french results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: VOXPOPULI type: facebook/voxpopuli config: fr split: test args: fr metrics: - name: Wer type: wer value: 0.10414829788606697 --- # whisper-large-v2-french This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the VOXPOPULI dataset. It achieves the following results on the evaluation set: - Loss: 0.2468 - Wer Ortho: 0.1405 - Wer: 0.1041 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.1851 | 1.0 | 2207 | 0.2349 | 0.1399 | 0.1044 | | 0.1318 | 2.0 | 4415 | 0.2312 | 0.1377 | 0.1015 | | 0.0921 | 3.0 | 6621 | 0.2468 | 0.1405 | 0.1041 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3