Model save
Browse files
README.md
CHANGED
@@ -3,8 +3,6 @@ library_name: transformers
|
|
3 |
license: other
|
4 |
base_model: nvidia/mit-b1
|
5 |
tags:
|
6 |
-
- image-segmentation
|
7 |
-
- vision
|
8 |
- generated_from_trainer
|
9 |
model-index:
|
10 |
- name: segformer-finetuned-tt-2k-b1
|
@@ -16,16 +14,16 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
# segformer-finetuned-tt-2k-b1
|
18 |
|
19 |
-
This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on
|
20 |
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.
|
22 |
-
- Mean Iou: 0.
|
23 |
-
- Mean Accuracy: 0.
|
24 |
-
- Overall Accuracy: 0.
|
25 |
- Accuracy Text: nan
|
26 |
-
- Accuracy No Text: 0.
|
27 |
- Iou Text: 0.0
|
28 |
-
- Iou No Text: 0.
|
29 |
|
30 |
## Model description
|
31 |
|
@@ -50,7 +48,7 @@ The following hyperparameters were used during training:
|
|
50 |
- seed: 1337
|
51 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
52 |
- lr_scheduler_type: polynomial
|
53 |
-
- training_steps:
|
54 |
|
55 |
### Training results
|
56 |
|
@@ -72,6 +70,30 @@ The following hyperparameters were used during training:
|
|
72 |
| 0.0834 | 14.0 | 1750 | 0.9820 | nan | 0.9820 | 0.0 | 0.0899 | 0.9820 | 0.4910 | 0.9820 |
|
73 |
| 0.0861 | 15.0 | 1875 | 0.9815 | nan | 0.9815 | 0.0 | 0.0902 | 0.9815 | 0.4907 | 0.9815 |
|
74 |
| 0.0803 | 16.0 | 2000 | 0.9793 | nan | 0.9793 | 0.0 | 0.0929 | 0.9793 | 0.4897 | 0.9793 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
|
77 |
### Framework versions
|
|
|
3 |
license: other
|
4 |
base_model: nvidia/mit-b1
|
5 |
tags:
|
|
|
|
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
8 |
- name: segformer-finetuned-tt-2k-b1
|
|
|
14 |
|
15 |
# segformer-finetuned-tt-2k-b1
|
16 |
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0912
|
20 |
+
- Mean Iou: 0.4902
|
21 |
+
- Mean Accuracy: 0.9805
|
22 |
+
- Overall Accuracy: 0.9805
|
23 |
- Accuracy Text: nan
|
24 |
+
- Accuracy No Text: 0.9805
|
25 |
- Iou Text: 0.0
|
26 |
+
- Iou No Text: 0.9805
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
48 |
- seed: 1337
|
49 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
50 |
- lr_scheduler_type: polynomial
|
51 |
+
- training_steps: 5000
|
52 |
|
53 |
### Training results
|
54 |
|
|
|
70 |
| 0.0834 | 14.0 | 1750 | 0.9820 | nan | 0.9820 | 0.0 | 0.0899 | 0.9820 | 0.4910 | 0.9820 |
|
71 |
| 0.0861 | 15.0 | 1875 | 0.9815 | nan | 0.9815 | 0.0 | 0.0902 | 0.9815 | 0.4907 | 0.9815 |
|
72 |
| 0.0803 | 16.0 | 2000 | 0.9793 | nan | 0.9793 | 0.0 | 0.0929 | 0.9793 | 0.4897 | 0.9793 |
|
73 |
+
| 0.0884 | 17.0 | 2125 | 0.1001 | 0.4875 | 0.9751 | 0.9751 | nan | 0.9751 | 0.0 | 0.9751 |
|
74 |
+
| 0.0871 | 18.0 | 2250 | 0.0907 | 0.4892 | 0.9783 | 0.9783 | nan | 0.9783 | 0.0 | 0.9783 |
|
75 |
+
| 0.0854 | 19.0 | 2375 | 0.0893 | 0.4924 | 0.9849 | 0.9849 | nan | 0.9849 | 0.0 | 0.9849 |
|
76 |
+
| 0.0852 | 20.0 | 2500 | 0.0870 | 0.4915 | 0.9831 | 0.9831 | nan | 0.9831 | 0.0 | 0.9831 |
|
77 |
+
| 0.0858 | 21.0 | 2625 | 0.0925 | 0.4896 | 0.9792 | 0.9792 | nan | 0.9792 | 0.0 | 0.9792 |
|
78 |
+
| 0.0804 | 22.0 | 2750 | 0.0964 | 0.4887 | 0.9774 | 0.9774 | nan | 0.9774 | 0.0 | 0.9774 |
|
79 |
+
| 0.076 | 23.0 | 2875 | 0.0934 | 0.4893 | 0.9786 | 0.9786 | nan | 0.9786 | 0.0 | 0.9786 |
|
80 |
+
| 0.0753 | 24.0 | 3000 | 0.0906 | 0.4890 | 0.9781 | 0.9781 | nan | 0.9781 | 0.0 | 0.9781 |
|
81 |
+
| 0.0742 | 25.0 | 3125 | 0.0962 | 0.4900 | 0.9801 | 0.9801 | nan | 0.9801 | 0.0 | 0.9801 |
|
82 |
+
| 0.0724 | 26.0 | 3250 | 0.0892 | 0.4920 | 0.9840 | 0.9840 | nan | 0.9840 | 0.0 | 0.9840 |
|
83 |
+
| 0.0794 | 27.0 | 3375 | 0.0885 | 0.4902 | 0.9803 | 0.9803 | nan | 0.9803 | 0.0 | 0.9803 |
|
84 |
+
| 0.0685 | 28.0 | 3500 | 0.0932 | 0.4911 | 0.9821 | 0.9821 | nan | 0.9821 | 0.0 | 0.9821 |
|
85 |
+
| 0.0695 | 29.0 | 3625 | 0.0890 | 0.4906 | 0.9812 | 0.9812 | nan | 0.9812 | 0.0 | 0.9812 |
|
86 |
+
| 0.065 | 30.0 | 3750 | 0.0877 | 0.4904 | 0.9808 | 0.9808 | nan | 0.9808 | 0.0 | 0.9808 |
|
87 |
+
| 0.0699 | 31.0 | 3875 | 0.0947 | 0.4877 | 0.9754 | 0.9754 | nan | 0.9754 | 0.0 | 0.9754 |
|
88 |
+
| 0.0742 | 32.0 | 4000 | 0.0875 | 0.4902 | 0.9805 | 0.9805 | nan | 0.9805 | 0.0 | 0.9805 |
|
89 |
+
| 0.0646 | 33.0 | 4125 | 0.0895 | 0.4903 | 0.9805 | 0.9805 | nan | 0.9805 | 0.0 | 0.9805 |
|
90 |
+
| 0.0677 | 34.0 | 4250 | 0.0915 | 0.4909 | 0.9818 | 0.9818 | nan | 0.9818 | 0.0 | 0.9818 |
|
91 |
+
| 0.0666 | 35.0 | 4375 | 0.0932 | 0.4890 | 0.9781 | 0.9781 | nan | 0.9781 | 0.0 | 0.9781 |
|
92 |
+
| 0.062 | 36.0 | 4500 | 0.0893 | 0.4901 | 0.9803 | 0.9803 | nan | 0.9803 | 0.0 | 0.9803 |
|
93 |
+
| 0.0623 | 37.0 | 4625 | 0.0934 | 0.4895 | 0.9789 | 0.9789 | nan | 0.9789 | 0.0 | 0.9789 |
|
94 |
+
| 0.0658 | 38.0 | 4750 | 0.0907 | 0.4913 | 0.9826 | 0.9826 | nan | 0.9826 | 0.0 | 0.9826 |
|
95 |
+
| 0.0596 | 39.0 | 4875 | 0.0904 | 0.4915 | 0.9831 | 0.9831 | nan | 0.9831 | 0.0 | 0.9831 |
|
96 |
+
| 0.0628 | 40.0 | 5000 | 0.0912 | 0.4902 | 0.9805 | 0.9805 | nan | 0.9805 | 0.0 | 0.9805 |
|
97 |
|
98 |
|
99 |
### Framework versions
|