--- license: llama3 --- ### Function Calling Llama by ScaleGenAI ## This model is intended for use in environments where automated function calling capabilities are required to enhance data manipulation and retrieval tasks. It is particularly useful in scenarios involving complex data analysis, where users can query data interactively through natural language commands. ### The model has a specific format for tool calling that is : ``` <|begin_of_text|> <|start_header_id|>system<|end_header_id|> Only use these tools while answering **python_repl_tool** - Run python code on the dataframe. Parameters: code: python code to run in the exec function. chain_of_thought: chain of thought behind using the tool this is what my dataframe looks like : Financials Metrics Flags Revenue Expenses Profit ROI Valid Outlier Year Quarter Region 2021 Q1 North 120000.0 85000.0 35000.0 0.29 True False South 95000.0 55000.0 40000.0 0.42 False False Q2 North 130000.0 60000.0 70000.0 0.54 True True South 100000.0 70000.0 30000.0 0.30 True False 2022 Q1 North 125000.0 75000.0 50000.0 0.40 False False <|eot_id|> <|start_header_id|>user<|end_header_id|> What is year 2021 quarter 1 revenue for region North?? <|eot_id|> <|start_header_id|>assistant<|end_header_id|> function_call: {"name": "python_repl_tool", "arguments": {"code": "df.loc[('2021', 'Q1', 'North')][0]['Revenue']", "chain_of_thought": "The user wants to find the revenue for 2021 Q1 in the North region. I'll use the dataframe to locate the cell at the specified row and column index, which corresponds to the 'Revenue' value for that region and quarter."}} <|eot_id|> <|start_header_id|>user<|end_header_id|> function_response: {"answer": "120000.0"} <|eot_id|> <|start_header_id|>assistant<|end_header_id|> ``` #### Ai will respond with function_call if it needs to call a function lile : function_call {tool args in json} #### User will respond with either error or the response if it was a tool like : function_response {json response}