update model card README.md
Browse files- README.md +86 -0
- fine-tune-whisper-non-streaming-ms.ipynb +63 -6
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ms_my
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- whisper-event
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- google/fleurs
|
10 |
+
metrics:
|
11 |
+
- wer
|
12 |
+
model-index:
|
13 |
+
- name: Whisper Medium MS - Augmented
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Automatic Speech Recognition
|
17 |
+
type: automatic-speech-recognition
|
18 |
+
dataset:
|
19 |
+
name: google/fleurs
|
20 |
+
type: google/fleurs
|
21 |
+
config: ms_my
|
22 |
+
split: test
|
23 |
+
args: ms_my
|
24 |
+
metrics:
|
25 |
+
- name: Wer
|
26 |
+
type: wer
|
27 |
+
value: 9.578362255965294
|
28 |
+
---
|
29 |
+
|
30 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
31 |
+
should probably proofread and complete it, then remove this comment. -->
|
32 |
+
|
33 |
+
# Whisper Medium MS - Augmented
|
34 |
+
|
35 |
+
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the google/fleurs dataset.
|
36 |
+
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 0.2066
|
38 |
+
- Wer: 9.5784
|
39 |
+
- Cer: 2.8109
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 1e-05
|
59 |
+
- train_batch_size: 2
|
60 |
+
- eval_batch_size: 2
|
61 |
+
- seed: 42
|
62 |
+
- gradient_accumulation_steps: 16
|
63 |
+
- total_train_batch_size: 32
|
64 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
+
- lr_scheduler_type: linear
|
66 |
+
- lr_scheduler_warmup_steps: 100
|
67 |
+
- training_steps: 1000
|
68 |
+
- mixed_precision_training: Native AMP
|
69 |
+
|
70 |
+
### Training results
|
71 |
+
|
72 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
73 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|
|
74 |
+
| 0.0876 | 2.15 | 200 | 0.1949 | 10.3105 | 3.0685 |
|
75 |
+
| 0.0064 | 4.3 | 400 | 0.1974 | 9.7004 | 2.9596 |
|
76 |
+
| 0.0014 | 6.45 | 600 | 0.2031 | 9.6190 | 2.8955 |
|
77 |
+
| 0.001 | 8.6 | 800 | 0.2058 | 9.6055 | 2.8440 |
|
78 |
+
| 0.0009 | 10.75 | 1000 | 0.2066 | 9.5784 | 2.8109 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.26.0.dev0
|
84 |
+
- Pytorch 1.13.0+cu117
|
85 |
+
- Datasets 2.7.1.dev0
|
86 |
+
- Tokenizers 0.13.2
|
fine-tune-whisper-non-streaming-ms.ipynb
CHANGED
@@ -1042,7 +1042,7 @@
|
|
1042 |
},
|
1043 |
{
|
1044 |
"cell_type": "code",
|
1045 |
-
"execution_count":
|
1046 |
"id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de",
|
1047 |
"metadata": {
|
1048 |
"id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de",
|
@@ -1070,8 +1070,8 @@
|
|
1070 |
"\n",
|
1071 |
" <div>\n",
|
1072 |
" \n",
|
1073 |
-
" <progress value='
|
1074 |
-
" [1000/1000
|
1075 |
" </div>\n",
|
1076 |
" <table border=\"1\" class=\"dataframe\">\n",
|
1077 |
" <thead>\n",
|
@@ -1177,8 +1177,24 @@
|
|
1177 |
"Configuration saved in ./checkpoint-1000/config.json\n",
|
1178 |
"Model weights saved in ./checkpoint-1000/pytorch_model.bin\n",
|
1179 |
"Feature extractor saved in ./checkpoint-1000/preprocessor_config.json\n",
|
1180 |
-
"Feature extractor saved in ./preprocessor_config.json\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
1181 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1182 |
}
|
1183 |
],
|
1184 |
"source": [
|
@@ -1197,7 +1213,7 @@
|
|
1197 |
},
|
1198 |
{
|
1199 |
"cell_type": "code",
|
1200 |
-
"execution_count":
|
1201 |
"id": "c704f91e-241b-48c9-b8e0-f0da396a9663",
|
1202 |
"metadata": {
|
1203 |
"id": "c704f91e-241b-48c9-b8e0-f0da396a9663"
|
@@ -1232,7 +1248,48 @@
|
|
1232 |
"metadata": {
|
1233 |
"id": "d7030622-caf7-4039-939b-6195cdaa2585"
|
1234 |
},
|
1235 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1236 |
"source": [
|
1237 |
"trainer.push_to_hub(**kwargs)"
|
1238 |
]
|
|
|
1042 |
},
|
1043 |
{
|
1044 |
"cell_type": "code",
|
1045 |
+
"execution_count": 23,
|
1046 |
"id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de",
|
1047 |
"metadata": {
|
1048 |
"id": "ee8b7b8e-1c9a-4d77-9137-1778a629e6de",
|
|
|
1070 |
"\n",
|
1071 |
" <div>\n",
|
1072 |
" \n",
|
1073 |
+
" <progress value='1000' max='1000' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
1074 |
+
" [1000/1000 4:05:08, Epoch 10/11]\n",
|
1075 |
" </div>\n",
|
1076 |
" <table border=\"1\" class=\"dataframe\">\n",
|
1077 |
" <thead>\n",
|
|
|
1177 |
"Configuration saved in ./checkpoint-1000/config.json\n",
|
1178 |
"Model weights saved in ./checkpoint-1000/pytorch_model.bin\n",
|
1179 |
"Feature extractor saved in ./checkpoint-1000/preprocessor_config.json\n",
|
1180 |
+
"Feature extractor saved in ./preprocessor_config.json\n",
|
1181 |
+
"\n",
|
1182 |
+
"\n",
|
1183 |
+
"Training completed. Do not forget to share your model on huggingface.co/models =)\n",
|
1184 |
+
"\n",
|
1185 |
+
"\n",
|
1186 |
+
"Loading best model from ./checkpoint-1000 (score: 9.578362255965294).\n"
|
1187 |
]
|
1188 |
+
},
|
1189 |
+
{
|
1190 |
+
"data": {
|
1191 |
+
"text/plain": [
|
1192 |
+
"TrainOutput(global_step=1000, training_loss=0.12478019709698857, metrics={'train_runtime': 14718.8594, 'train_samples_per_second': 2.174, 'train_steps_per_second': 0.068, 'total_flos': 3.26797691387904e+19, 'train_loss': 0.12478019709698857, 'epoch': 10.75})"
|
1193 |
+
]
|
1194 |
+
},
|
1195 |
+
"execution_count": 23,
|
1196 |
+
"metadata": {},
|
1197 |
+
"output_type": "execute_result"
|
1198 |
}
|
1199 |
],
|
1200 |
"source": [
|
|
|
1213 |
},
|
1214 |
{
|
1215 |
"cell_type": "code",
|
1216 |
+
"execution_count": 24,
|
1217 |
"id": "c704f91e-241b-48c9-b8e0-f0da396a9663",
|
1218 |
"metadata": {
|
1219 |
"id": "c704f91e-241b-48c9-b8e0-f0da396a9663"
|
|
|
1248 |
"metadata": {
|
1249 |
"id": "d7030622-caf7-4039-939b-6195cdaa2585"
|
1250 |
},
|
1251 |
+
"outputs": [
|
1252 |
+
{
|
1253 |
+
"name": "stderr",
|
1254 |
+
"output_type": "stream",
|
1255 |
+
"text": [
|
1256 |
+
"Saving model checkpoint to ./\n",
|
1257 |
+
"Configuration saved in ./config.json\n",
|
1258 |
+
"Model weights saved in ./pytorch_model.bin\n",
|
1259 |
+
"Feature extractor saved in ./preprocessor_config.json\n",
|
1260 |
+
"Several commits (2) will be pushed upstream.\n",
|
1261 |
+
"The progress bars may be unreliable.\n"
|
1262 |
+
]
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"data": {
|
1266 |
+
"application/vnd.jupyter.widget-view+json": {
|
1267 |
+
"model_id": "cfdf5c66dd1c4c61b8e49df34cf219bb",
|
1268 |
+
"version_major": 2,
|
1269 |
+
"version_minor": 0
|
1270 |
+
},
|
1271 |
+
"text/plain": [
|
1272 |
+
"Upload file pytorch_model.bin: 0%| | 32.0k/2.85G [00:00<?, ?B/s]"
|
1273 |
+
]
|
1274 |
+
},
|
1275 |
+
"metadata": {},
|
1276 |
+
"output_type": "display_data"
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"data": {
|
1280 |
+
"application/vnd.jupyter.widget-view+json": {
|
1281 |
+
"model_id": "d3c38f0c5bd843b7a1f6eb6f30797880",
|
1282 |
+
"version_major": 2,
|
1283 |
+
"version_minor": 0
|
1284 |
+
},
|
1285 |
+
"text/plain": [
|
1286 |
+
"Upload file runs/Dec20_10-49-53_DANDAN/events.out.tfevents.1671504600.DANDAN.793.0: 100%|##########| 12.4k/12.…"
|
1287 |
+
]
|
1288 |
+
},
|
1289 |
+
"metadata": {},
|
1290 |
+
"output_type": "display_data"
|
1291 |
+
}
|
1292 |
+
],
|
1293 |
"source": [
|
1294 |
"trainer.push_to_hub(**kwargs)"
|
1295 |
]
|