Segamboam commited on
Commit
1209c6a
·
1 Parent(s): e222167

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.55 +/- 0.82
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87135ee2308795bd070c1f08c05d3519397c20c917650f34a2b9e6a2e575fa74
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7efb95e2b3a0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7efb95e29240>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674761907121392698,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkBvpPuBhn7zTMBI/kBvpPuBhn7zTMBI/kBvpPuBhn7zTMBI/kBvpPuBhn7zTMBI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqWmQv34/0b6fzuU+qhv5viFMEj8ydrM/NoDfPuz4Hb8lUrY/I4iov04Pwb9Dn4q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACQG+k+4GGfvNMwEj/kQDE7n9k+uwMmnDqQG+k+4GGfvNMwEj/kQDE7n9k+uwMmnDqQG+k+4GGfvNMwEj/kQDE7n9k+uwMmnDqQG+k+4GGfvNMwEj/kQDE7n9k+uwMmnDqUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.4552884 -0.01945585 0.5710575 ]\n [ 0.4552884 -0.01945585 0.5710575 ]\n [ 0.4552884 -0.01945585 0.5710575 ]\n [ 0.4552884 -0.01945585 0.5710575 ]]",
60
+ "desired_goal": "[[-1.1282245 -0.40868753 0.44884202]\n [-0.48653919 0.57147413 1.4020445 ]\n [ 0.43652505 -0.6170795 1.4243819 ]\n [-1.3166546 -1.5082796 -1.0829853 ]]",
61
+ "observation": "[[ 0.4552884 -0.01945585 0.5710575 0.00270467 -0.00291214 0.00119132]\n [ 0.4552884 -0.01945585 0.5710575 0.00270467 -0.00291214 0.00119132]\n [ 0.4552884 -0.01945585 0.5710575 0.00270467 -0.00291214 0.00119132]\n [ 0.4552884 -0.01945585 0.5710575 0.00270467 -0.00291214 0.00119132]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA58QCPpT3V72u7Uo+9YX+PRhgAr3cIn09KLAKvopv8z2RIBY+BmsHPmRTEz5MR30+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.12770425 -0.05272634 0.1981723 ]\n [ 0.12427894 -0.03182992 0.06180082]\n [-0.13543761 0.11886509 0.1466086 ]\n [ 0.1322442 0.1438728 0.24734229]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdxIR/kVwC8CUhpRSlIwBbJRLMowBdJRHQKVX+aDwpfB1fZQoaAZoCWgPQwhFSrN5HKYAwJSGlFKUaBVLMmgWR0ClV6pAMUh3dX2UKGgGaAloD0MIfecXJeivAcCUhpRSlGgVSzJoFkdApVdrj7yhBnV9lChoBmgJaA9DCMmvH2KDBf+/lIaUUpRoFUsyaBZHQKVXLV6u4gB1fZQoaAZoCWgPQwhUqkTZW8r/v5SGlFKUaBVLMmgWR0ClWOx9gF5fdX2UKGgGaAloD0MIDFacai3M+r+UhpRSlGgVSzJoFkdApVidR+BpYnV9lChoBmgJaA9DCGCwG7YtigTAlIaUUpRoFUsyaBZHQKVYXoGIKtx1fZQoaAZoCWgPQwggtB6+TNQAwJSGlFKUaBVLMmgWR0ClWCBdMTN/dX2UKGgGaAloD0MIrWhznNuE97+UhpRSlGgVSzJoFkdApVn4UUO/cnV9lChoBmgJaA9DCPshNlg4ORDAlIaUUpRoFUsyaBZHQKVZqRywOe91fZQoaAZoCWgPQwgwoYLDC6Lwv5SGlFKUaBVLMmgWR0ClWWrS/j82dX2UKGgGaAloD0MIqb7zixL0+7+UhpRSlGgVSzJoFkdApVksv24/eXV9lChoBmgJaA9DCIE//Pz34Pi/lIaUUpRoFUsyaBZHQKVbBlsguAZ1fZQoaAZoCWgPQwjRCDauf1f8v5SGlFKUaBVLMmgWR0ClWrdIGyHEdX2UKGgGaAloD0MIyLd3DfrS+L+UhpRSlGgVSzJoFkdApVp4mzByj3V9lChoBmgJaA9DCHAnEeFfxPi/lIaUUpRoFUsyaBZHQKVaOnVoYel1fZQoaAZoCWgPQwgfgT/8/LcCwJSGlFKUaBVLMmgWR0ClXAxsEaESdX2UKGgGaAloD0MIJGJKJNHL/L+UhpRSlGgVSzJoFkdApVu9MsYl6nV9lChoBmgJaA9DCJBOXfksj/2/lIaUUpRoFUsyaBZHQKVbfqzJIUd1fZQoaAZoCWgPQwgw2A3bFsUAwJSGlFKUaBVLMmgWR0ClW0CAtnPFdX2UKGgGaAloD0MI7X2qCg2E97+UhpRSlGgVSzJoFkdApV0Xegte2XV9lChoBmgJaA9DCF9CBYcXBALAlIaUUpRoFUsyaBZHQKVcyPjn3cp1fZQoaAZoCWgPQwio/dZOlAT4v5SGlFKUaBVLMmgWR0ClXIw4sEq2dX2UKGgGaAloD0MIkfKTap9O/b+UhpRSlGgVSzJoFkdApVxOFajesXV9lChoBmgJaA9DCNHMk2sKxALAlIaUUpRoFUsyaBZHQKVeD39rGip1fZQoaAZoCWgPQwh0RpT2Br8RwJSGlFKUaBVLMmgWR0ClXcB1klNUdX2UKGgGaAloD0MI1q2ek94397+UhpRSlGgVSzJoFkdApV2CD9OymnV9lChoBmgJaA9DCEewcf27fve/lIaUUpRoFUsyaBZHQKVdQ8IzFdd1fZQoaAZoCWgPQwi/0vnwLIH+v5SGlFKUaBVLMmgWR0ClXyLb5/LDdX2UKGgGaAloD0MIcqWeBaH8AcCUhpRSlGgVSzJoFkdApV7TwlSjxnV9lChoBmgJaA9DCEAwR4/fmwLAlIaUUpRoFUsyaBZHQKVelWpZOi51fZQoaAZoCWgPQwhrYRbaOY36v5SGlFKUaBVLMmgWR0ClXldfCyhSdX2UKGgGaAloD0MIQiECDqEqBMCUhpRSlGgVSzJoFkdApWAkclw97nV9lChoBmgJaA9DCCUH7GrylPW/lIaUUpRoFUsyaBZHQKVf1QtSQ5p1fZQoaAZoCWgPQwg66ui4Ghn4v5SGlFKUaBVLMmgWR0ClX5aMaS9vdX2UKGgGaAloD0MIv+/fvDhx9b+UhpRSlGgVSzJoFkdApV9YsAeaKHV9lChoBmgJaA9DCBjuXBjp5QDAlIaUUpRoFUsyaBZHQKVhKBvJiiJ1fZQoaAZoCWgPQwi+bDttjcgAwJSGlFKUaBVLMmgWR0ClYNjafzz3dX2UKGgGaAloD0MImGn7V1aa+7+UhpRSlGgVSzJoFkdApWCaJEYwZnV9lChoBmgJaA9DCDgVqTC20Pa/lIaUUpRoFUsyaBZHQKVgW9/SYw91fZQoaAZoCWgPQwgv4GWGjTICwJSGlFKUaBVLMmgWR0ClYie1jRUndX2UKGgGaAloD0MITDj0Fg8v+L+UhpRSlGgVSzJoFkdApWHYbQ1JlXV9lChoBmgJaA9DCOXTY1sG3P6/lIaUUpRoFUsyaBZHQKVhmZy+6Ah1fZQoaAZoCWgPQwhQq+gPzTz/v5SGlFKUaBVLMmgWR0ClYVxJul41dX2UKGgGaAloD0MItHOaBdqd+L+UhpRSlGgVSzJoFkdApWMzz/ZM+XV9lChoBmgJaA9DCJAuNq0UQv6/lIaUUpRoFUsyaBZHQKVi5LA57w91fZQoaAZoCWgPQwg/xty1hDwGwJSGlFKUaBVLMmgWR0ClYqYEfT1DdX2UKGgGaAloD0MIxXHg1XKnCMCUhpRSlGgVSzJoFkdApWJn6ZYxL3V9lChoBmgJaA9DCHJw6ZjzjPm/lIaUUpRoFUsyaBZHQKVkPGLk0aZ1fZQoaAZoCWgPQwhblq/L8H8MwJSGlFKUaBVLMmgWR0ClY+0jTrmhdX2UKGgGaAloD0MIc2N6whLP9r+UhpRSlGgVSzJoFkdApWOus7uDz3V9lChoBmgJaA9DCDoF+dnI9fi/lIaUUpRoFUsyaBZHQKVjcKoAGSp1fZQoaAZoCWgPQwijW6/pQYEHwJSGlFKUaBVLMmgWR0ClZUWwV0tAdX2UKGgGaAloD0MIvM/x0eIM/L+UhpRSlGgVSzJoFkdApWT2kxh2GXV9lChoBmgJaA9DCKzEPCtpJQ7AlIaUUpRoFUsyaBZHQKVkuBS1map1fZQoaAZoCWgPQwgychb2tOMDwJSGlFKUaBVLMmgWR0ClZHnoX9BKdX2UKGgGaAloD0MIAiuHFtmO/b+UhpRSlGgVSzJoFkdApWZQpYs/ZHV9lChoBmgJaA9DCBNlbynnC/S/lIaUUpRoFUsyaBZHQKVmAaR6nix1fZQoaAZoCWgPQwgceSCySDMAwJSGlFKUaBVLMmgWR0ClZcL1VYITdX2UKGgGaAloD0MI6X5OQX52+b+UhpRSlGgVSzJoFkdApWWFBF/hEXV9lChoBmgJaA9DCC9szVZesvW/lIaUUpRoFUsyaBZHQKVnYhA4XGh1fZQoaAZoCWgPQwjKiXYVUn4CwJSGlFKUaBVLMmgWR0ClZxMFt8/mdX2UKGgGaAloD0MIxCPx8nTu/7+UhpRSlGgVSzJoFkdApWbUep4r0HV9lChoBmgJaA9DCNf6IqEtp/a/lIaUUpRoFUsyaBZHQKVmlkDIRyx1fZQoaAZoCWgPQwgIjzaOWMvyv5SGlFKUaBVLMmgWR0ClaFesPrfMdX2UKGgGaAloD0MIhLhy9s5o/r+UhpRSlGgVSzJoFkdApWgIckt293V9lChoBmgJaA9DCEfH1ciuVAHAlIaUUpRoFUsyaBZHQKVnyb1AZ891fZQoaAZoCWgPQwgBwocSLbn5v5SGlFKUaBVLMmgWR0ClZ4uZCv5hdX2UKGgGaAloD0MIxEDXvoD+BcCUhpRSlGgVSzJoFkdApWlTA1vVE3V9lChoBmgJaA9DCG2QSUbOAvq/lIaUUpRoFUsyaBZHQKVpA/Tspod1fZQoaAZoCWgPQwgXDRmPUgkDwJSGlFKUaBVLMmgWR0ClaMV5KODKdX2UKGgGaAloD0MIMuiE0EGXBsCUhpRSlGgVSzJoFkdApWiHOY6XB3V9lChoBmgJaA9DCEPnNXaJKgDAlIaUUpRoFUsyaBZHQKVqTH7P6bh1fZQoaAZoCWgPQwiH3Aw34PPyv5SGlFKUaBVLMmgWR0Claf0vwmVrdX2UKGgGaAloD0MIwaikTkCzAcCUhpRSlGgVSzJoFkdApWm+Y0EX+HV9lChoBmgJaA9DCIqO5PIfkgLAlIaUUpRoFUsyaBZHQKVpgIBzV+Z1fZQoaAZoCWgPQwiKcmn8wisCwJSGlFKUaBVLMmgWR0Cla1LgwXZXdX2UKGgGaAloD0MIh2u1h73wCcCUhpRSlGgVSzJoFkdApWsDtgKF7HV9lChoBmgJaA9DCAVPIVfqeQHAlIaUUpRoFUsyaBZHQKVqxR4yGi51fZQoaAZoCWgPQwhgBmNEohD3v5SGlFKUaBVLMmgWR0Claob6P8yfdX2UKGgGaAloD0MIAwgfSrRk/b+UhpRSlGgVSzJoFkdApWxODe0ojXV9lChoBmgJaA9DCOM0RBX+zPm/lIaUUpRoFUsyaBZHQKVr/vybx3F1fZQoaAZoCWgPQwj+t5IdG0EAwJSGlFKUaBVLMmgWR0Cla8CKR+z/dX2UKGgGaAloD0MIT5KumXyTAMCUhpRSlGgVSzJoFkdApWuCXY150XV9lChoBmgJaA9DCC82rRQC+fa/lIaUUpRoFUsyaBZHQKVtUdCmdiF1fZQoaAZoCWgPQwgCDwwgfMgAwJSGlFKUaBVLMmgWR0ClbQJ9y926dX2UKGgGaAloD0MIjQ5Iwr6d87+UhpRSlGgVSzJoFkdApWzD8iwB53V9lChoBmgJaA9DCAVqMXiYdv2/lIaUUpRoFUsyaBZHQKVshebd8At1fZQoaAZoCWgPQwgQ6EzaVB35v5SGlFKUaBVLMmgWR0Clbk6ZhKDkdX2UKGgGaAloD0MIMgQAx549AsCUhpRSlGgVSzJoFkdApW3/XRPXTXV9lChoBmgJaA9DCAWMLm8OV/m/lIaUUpRoFUsyaBZHQKVtwJ9Aood1fZQoaAZoCWgPQwj1LAjlfVwFwJSGlFKUaBVLMmgWR0ClbYKcNH6NdX2UKGgGaAloD0MI7N0f71Xr97+UhpRSlGgVSzJoFkdApW9Uiliz9nV9lChoBmgJaA9DCKuWdJSDGQHAlIaUUpRoFUsyaBZHQKVvBVhCtzV1fZQoaAZoCWgPQwhDOjyE8VP8v5SGlFKUaBVLMmgWR0ClbsbhNucddX2UKGgGaAloD0MIJbA5B8/kAsCUhpRSlGgVSzJoFkdApW6I5WBBiXV9lChoBmgJaA9DCDQPYJFfnwDAlIaUUpRoFUsyaBZHQKVwVyCnP3V1fZQoaAZoCWgPQwjEQUKULygPwJSGlFKUaBVLMmgWR0ClcAf95yEMdX2UKGgGaAloD0MIBRbAlIFD+L+UhpRSlGgVSzJoFkdApW/JR0lqrXV9lChoBmgJaA9DCNiACHHlbAPAlIaUUpRoFUsyaBZHQKVvixFAmiR1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e6810e3c6d9570cc6af70ff81fd281d857f86b3621983eb66a9fceb3abad1ca
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84744344e9bd9e1537c9d7910e91f84249e921b3d7ef937b863d39f6345eee2d
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7efb95e2b3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efb95e29240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674761907121392698, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkBvpPuBhn7zTMBI/kBvpPuBhn7zTMBI/kBvpPuBhn7zTMBI/kBvpPuBhn7zTMBI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqWmQv34/0b6fzuU+qhv5viFMEj8ydrM/NoDfPuz4Hb8lUrY/I4iov04Pwb9Dn4q/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACQG+k+4GGfvNMwEj/kQDE7n9k+uwMmnDqQG+k+4GGfvNMwEj/kQDE7n9k+uwMmnDqQG+k+4GGfvNMwEj/kQDE7n9k+uwMmnDqQG+k+4GGfvNMwEj/kQDE7n9k+uwMmnDqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4552884 -0.01945585 0.5710575 ]\n [ 0.4552884 -0.01945585 0.5710575 ]\n [ 0.4552884 -0.01945585 0.5710575 ]\n [ 0.4552884 -0.01945585 0.5710575 ]]", "desired_goal": "[[-1.1282245 -0.40868753 0.44884202]\n [-0.48653919 0.57147413 1.4020445 ]\n [ 0.43652505 -0.6170795 1.4243819 ]\n [-1.3166546 -1.5082796 -1.0829853 ]]", "observation": "[[ 0.4552884 -0.01945585 0.5710575 0.00270467 -0.00291214 0.00119132]\n [ 0.4552884 -0.01945585 0.5710575 0.00270467 -0.00291214 0.00119132]\n [ 0.4552884 -0.01945585 0.5710575 0.00270467 -0.00291214 0.00119132]\n [ 0.4552884 -0.01945585 0.5710575 0.00270467 -0.00291214 0.00119132]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA58QCPpT3V72u7Uo+9YX+PRhgAr3cIn09KLAKvopv8z2RIBY+BmsHPmRTEz5MR30+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12770425 -0.05272634 0.1981723 ]\n [ 0.12427894 -0.03182992 0.06180082]\n [-0.13543761 0.11886509 0.1466086 ]\n [ 0.1322442 0.1438728 0.24734229]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdxIR/kVwC8CUhpRSlIwBbJRLMowBdJRHQKVX+aDwpfB1fZQoaAZoCWgPQwhFSrN5HKYAwJSGlFKUaBVLMmgWR0ClV6pAMUh3dX2UKGgGaAloD0MIfecXJeivAcCUhpRSlGgVSzJoFkdApVdrj7yhBnV9lChoBmgJaA9DCMmvH2KDBf+/lIaUUpRoFUsyaBZHQKVXLV6u4gB1fZQoaAZoCWgPQwhUqkTZW8r/v5SGlFKUaBVLMmgWR0ClWOx9gF5fdX2UKGgGaAloD0MIDFacai3M+r+UhpRSlGgVSzJoFkdApVidR+BpYnV9lChoBmgJaA9DCGCwG7YtigTAlIaUUpRoFUsyaBZHQKVYXoGIKtx1fZQoaAZoCWgPQwggtB6+TNQAwJSGlFKUaBVLMmgWR0ClWCBdMTN/dX2UKGgGaAloD0MIrWhznNuE97+UhpRSlGgVSzJoFkdApVn4UUO/cnV9lChoBmgJaA9DCPshNlg4ORDAlIaUUpRoFUsyaBZHQKVZqRywOe91fZQoaAZoCWgPQwgwoYLDC6Lwv5SGlFKUaBVLMmgWR0ClWWrS/j82dX2UKGgGaAloD0MIqb7zixL0+7+UhpRSlGgVSzJoFkdApVksv24/eXV9lChoBmgJaA9DCIE//Pz34Pi/lIaUUpRoFUsyaBZHQKVbBlsguAZ1fZQoaAZoCWgPQwjRCDauf1f8v5SGlFKUaBVLMmgWR0ClWrdIGyHEdX2UKGgGaAloD0MIyLd3DfrS+L+UhpRSlGgVSzJoFkdApVp4mzByj3V9lChoBmgJaA9DCHAnEeFfxPi/lIaUUpRoFUsyaBZHQKVaOnVoYel1fZQoaAZoCWgPQwgfgT/8/LcCwJSGlFKUaBVLMmgWR0ClXAxsEaESdX2UKGgGaAloD0MIJGJKJNHL/L+UhpRSlGgVSzJoFkdApVu9MsYl6nV9lChoBmgJaA9DCJBOXfksj/2/lIaUUpRoFUsyaBZHQKVbfqzJIUd1fZQoaAZoCWgPQwgw2A3bFsUAwJSGlFKUaBVLMmgWR0ClW0CAtnPFdX2UKGgGaAloD0MI7X2qCg2E97+UhpRSlGgVSzJoFkdApV0Xegte2XV9lChoBmgJaA9DCF9CBYcXBALAlIaUUpRoFUsyaBZHQKVcyPjn3cp1fZQoaAZoCWgPQwio/dZOlAT4v5SGlFKUaBVLMmgWR0ClXIw4sEq2dX2UKGgGaAloD0MIkfKTap9O/b+UhpRSlGgVSzJoFkdApVxOFajesXV9lChoBmgJaA9DCNHMk2sKxALAlIaUUpRoFUsyaBZHQKVeD39rGip1fZQoaAZoCWgPQwh0RpT2Br8RwJSGlFKUaBVLMmgWR0ClXcB1klNUdX2UKGgGaAloD0MI1q2ek94397+UhpRSlGgVSzJoFkdApV2CD9OymnV9lChoBmgJaA9DCEewcf27fve/lIaUUpRoFUsyaBZHQKVdQ8IzFdd1fZQoaAZoCWgPQwi/0vnwLIH+v5SGlFKUaBVLMmgWR0ClXyLb5/LDdX2UKGgGaAloD0MIcqWeBaH8AcCUhpRSlGgVSzJoFkdApV7TwlSjxnV9lChoBmgJaA9DCEAwR4/fmwLAlIaUUpRoFUsyaBZHQKVelWpZOi51fZQoaAZoCWgPQwhrYRbaOY36v5SGlFKUaBVLMmgWR0ClXldfCyhSdX2UKGgGaAloD0MIQiECDqEqBMCUhpRSlGgVSzJoFkdApWAkclw97nV9lChoBmgJaA9DCCUH7GrylPW/lIaUUpRoFUsyaBZHQKVf1QtSQ5p1fZQoaAZoCWgPQwg66ui4Ghn4v5SGlFKUaBVLMmgWR0ClX5aMaS9vdX2UKGgGaAloD0MIv+/fvDhx9b+UhpRSlGgVSzJoFkdApV9YsAeaKHV9lChoBmgJaA9DCBjuXBjp5QDAlIaUUpRoFUsyaBZHQKVhKBvJiiJ1fZQoaAZoCWgPQwi+bDttjcgAwJSGlFKUaBVLMmgWR0ClYNjafzz3dX2UKGgGaAloD0MImGn7V1aa+7+UhpRSlGgVSzJoFkdApWCaJEYwZnV9lChoBmgJaA9DCDgVqTC20Pa/lIaUUpRoFUsyaBZHQKVgW9/SYw91fZQoaAZoCWgPQwgv4GWGjTICwJSGlFKUaBVLMmgWR0ClYie1jRUndX2UKGgGaAloD0MITDj0Fg8v+L+UhpRSlGgVSzJoFkdApWHYbQ1JlXV9lChoBmgJaA9DCOXTY1sG3P6/lIaUUpRoFUsyaBZHQKVhmZy+6Ah1fZQoaAZoCWgPQwhQq+gPzTz/v5SGlFKUaBVLMmgWR0ClYVxJul41dX2UKGgGaAloD0MItHOaBdqd+L+UhpRSlGgVSzJoFkdApWMzz/ZM+XV9lChoBmgJaA9DCJAuNq0UQv6/lIaUUpRoFUsyaBZHQKVi5LA57w91fZQoaAZoCWgPQwg/xty1hDwGwJSGlFKUaBVLMmgWR0ClYqYEfT1DdX2UKGgGaAloD0MIxXHg1XKnCMCUhpRSlGgVSzJoFkdApWJn6ZYxL3V9lChoBmgJaA9DCHJw6ZjzjPm/lIaUUpRoFUsyaBZHQKVkPGLk0aZ1fZQoaAZoCWgPQwhblq/L8H8MwJSGlFKUaBVLMmgWR0ClY+0jTrmhdX2UKGgGaAloD0MIc2N6whLP9r+UhpRSlGgVSzJoFkdApWOus7uDz3V9lChoBmgJaA9DCDoF+dnI9fi/lIaUUpRoFUsyaBZHQKVjcKoAGSp1fZQoaAZoCWgPQwijW6/pQYEHwJSGlFKUaBVLMmgWR0ClZUWwV0tAdX2UKGgGaAloD0MIvM/x0eIM/L+UhpRSlGgVSzJoFkdApWT2kxh2GXV9lChoBmgJaA9DCKzEPCtpJQ7AlIaUUpRoFUsyaBZHQKVkuBS1map1fZQoaAZoCWgPQwgychb2tOMDwJSGlFKUaBVLMmgWR0ClZHnoX9BKdX2UKGgGaAloD0MIAiuHFtmO/b+UhpRSlGgVSzJoFkdApWZQpYs/ZHV9lChoBmgJaA9DCBNlbynnC/S/lIaUUpRoFUsyaBZHQKVmAaR6nix1fZQoaAZoCWgPQwgceSCySDMAwJSGlFKUaBVLMmgWR0ClZcL1VYITdX2UKGgGaAloD0MI6X5OQX52+b+UhpRSlGgVSzJoFkdApWWFBF/hEXV9lChoBmgJaA9DCC9szVZesvW/lIaUUpRoFUsyaBZHQKVnYhA4XGh1fZQoaAZoCWgPQwjKiXYVUn4CwJSGlFKUaBVLMmgWR0ClZxMFt8/mdX2UKGgGaAloD0MIxCPx8nTu/7+UhpRSlGgVSzJoFkdApWbUep4r0HV9lChoBmgJaA9DCNf6IqEtp/a/lIaUUpRoFUsyaBZHQKVmlkDIRyx1fZQoaAZoCWgPQwgIjzaOWMvyv5SGlFKUaBVLMmgWR0ClaFesPrfMdX2UKGgGaAloD0MIhLhy9s5o/r+UhpRSlGgVSzJoFkdApWgIckt293V9lChoBmgJaA9DCEfH1ciuVAHAlIaUUpRoFUsyaBZHQKVnyb1AZ891fZQoaAZoCWgPQwgBwocSLbn5v5SGlFKUaBVLMmgWR0ClZ4uZCv5hdX2UKGgGaAloD0MIxEDXvoD+BcCUhpRSlGgVSzJoFkdApWlTA1vVE3V9lChoBmgJaA9DCG2QSUbOAvq/lIaUUpRoFUsyaBZHQKVpA/Tspod1fZQoaAZoCWgPQwgXDRmPUgkDwJSGlFKUaBVLMmgWR0ClaMV5KODKdX2UKGgGaAloD0MIMuiE0EGXBsCUhpRSlGgVSzJoFkdApWiHOY6XB3V9lChoBmgJaA9DCEPnNXaJKgDAlIaUUpRoFUsyaBZHQKVqTH7P6bh1fZQoaAZoCWgPQwiH3Aw34PPyv5SGlFKUaBVLMmgWR0Claf0vwmVrdX2UKGgGaAloD0MIwaikTkCzAcCUhpRSlGgVSzJoFkdApWm+Y0EX+HV9lChoBmgJaA9DCIqO5PIfkgLAlIaUUpRoFUsyaBZHQKVpgIBzV+Z1fZQoaAZoCWgPQwiKcmn8wisCwJSGlFKUaBVLMmgWR0Cla1LgwXZXdX2UKGgGaAloD0MIh2u1h73wCcCUhpRSlGgVSzJoFkdApWsDtgKF7HV9lChoBmgJaA9DCAVPIVfqeQHAlIaUUpRoFUsyaBZHQKVqxR4yGi51fZQoaAZoCWgPQwhgBmNEohD3v5SGlFKUaBVLMmgWR0Claob6P8yfdX2UKGgGaAloD0MIAwgfSrRk/b+UhpRSlGgVSzJoFkdApWxODe0ojXV9lChoBmgJaA9DCOM0RBX+zPm/lIaUUpRoFUsyaBZHQKVr/vybx3F1fZQoaAZoCWgPQwj+t5IdG0EAwJSGlFKUaBVLMmgWR0Cla8CKR+z/dX2UKGgGaAloD0MIT5KumXyTAMCUhpRSlGgVSzJoFkdApWuCXY150XV9lChoBmgJaA9DCC82rRQC+fa/lIaUUpRoFUsyaBZHQKVtUdCmdiF1fZQoaAZoCWgPQwgCDwwgfMgAwJSGlFKUaBVLMmgWR0ClbQJ9y926dX2UKGgGaAloD0MIjQ5Iwr6d87+UhpRSlGgVSzJoFkdApWzD8iwB53V9lChoBmgJaA9DCAVqMXiYdv2/lIaUUpRoFUsyaBZHQKVshebd8At1fZQoaAZoCWgPQwgQ6EzaVB35v5SGlFKUaBVLMmgWR0Clbk6ZhKDkdX2UKGgGaAloD0MIMgQAx549AsCUhpRSlGgVSzJoFkdApW3/XRPXTXV9lChoBmgJaA9DCAWMLm8OV/m/lIaUUpRoFUsyaBZHQKVtwJ9Aood1fZQoaAZoCWgPQwj1LAjlfVwFwJSGlFKUaBVLMmgWR0ClbYKcNH6NdX2UKGgGaAloD0MI7N0f71Xr97+UhpRSlGgVSzJoFkdApW9Uiliz9nV9lChoBmgJaA9DCKuWdJSDGQHAlIaUUpRoFUsyaBZHQKVvBVhCtzV1fZQoaAZoCWgPQwhDOjyE8VP8v5SGlFKUaBVLMmgWR0ClbsbhNucddX2UKGgGaAloD0MIJbA5B8/kAsCUhpRSlGgVSzJoFkdApW6I5WBBiXV9lChoBmgJaA9DCDQPYJFfnwDAlIaUUpRoFUsyaBZHQKVwVyCnP3V1fZQoaAZoCWgPQwjEQUKULygPwJSGlFKUaBVLMmgWR0ClcAf95yEMdX2UKGgGaAloD0MIBRbAlIFD+L+UhpRSlGgVSzJoFkdApW/JR0lqrXV9lChoBmgJaA9DCNiACHHlbAPAlIaUUpRoFUsyaBZHQKVvixFAmiR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (608 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.545059884246439, "std_reward": 0.8160907046566624, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-26T20:24:30.002460"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1863dd4b67399ef9eab9b4d958f695990cc9888490415a6306155046d31caeba
3
+ size 3056