--- license: mit tags: - generated_from_trainer metrics: - accuracy base_model: microsoft/deberta-v3-large model-index: - name: deberta-v3-large__sst2__train-16-5 results: [] --- # deberta-v3-large__sst2__train-16-5 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5433 - Accuracy: 0.7924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6774 | 1.0 | 7 | 0.7450 | 0.2857 | | 0.7017 | 2.0 | 14 | 0.7552 | 0.2857 | | 0.6438 | 3.0 | 21 | 0.7140 | 0.4286 | | 0.3525 | 4.0 | 28 | 0.5570 | 0.7143 | | 0.2061 | 5.0 | 35 | 0.5303 | 0.8571 | | 0.0205 | 6.0 | 42 | 0.6706 | 0.8571 | | 0.0068 | 7.0 | 49 | 0.8284 | 0.8571 | | 0.0029 | 8.0 | 56 | 0.9281 | 0.8571 | | 0.0015 | 9.0 | 63 | 0.9871 | 0.8571 | | 0.0013 | 10.0 | 70 | 1.0208 | 0.8571 | | 0.0008 | 11.0 | 77 | 1.0329 | 0.8571 | | 0.0005 | 12.0 | 84 | 1.0348 | 0.8571 | | 0.0004 | 13.0 | 91 | 1.0437 | 0.8571 | | 0.0005 | 14.0 | 98 | 1.0512 | 0.8571 | | 0.0004 | 15.0 | 105 | 1.0639 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3