--- library_name: peft tags: - axolotl - generated_from_trainer base_model: NousResearch/Llama-2-7b-hf model-index: - name: neocortex results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: NousResearch/Llama-2-7b-hf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true hub_model_id: neocortex load_in_8bit: false load_in_4bit: true strict: false datasets: - path: SethGA/neocortex type: alpaca shards: 20 dataset_prepared_path: val_set_size: 0.05 output_dir: ./qlora-out adapter: qlora lora_model_dir: sequence_len: 4096 sample_packing: false eval_sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: neocortex wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: checkpoint gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 3 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 eval_steps: 20 eval_table_size: 5 save_strategy: epoch save_steps: debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# neocortex This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the [neocortex_23k](https://huggingface.co/datasets/SethGA/neocortex_23k) dataset. It achieves the following results on the evaluation set: - Loss: 1.4558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5181 | 0.29 | 20 | 1.5627 | | 1.437 | 0.58 | 40 | 1.4861 | | 1.5196 | 0.87 | 60 | 1.4610 | | 1.4037 | 1.16 | 80 | 1.4512 | | 1.372 | 1.45 | 100 | 1.4493 | | 1.3853 | 1.74 | 120 | 1.4424 | | 1.2367 | 2.03 | 140 | 1.4460 | | 1.283 | 2.32 | 160 | 1.4602 | | 1.2933 | 2.61 | 180 | 1.4583 | | 1.2397 | 2.9 | 200 | 1.4558 | ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.17.0 - Tokenizers 0.15.0