Update README.md
Browse files
README.md
CHANGED
@@ -42,19 +42,19 @@ Since this is a base model the IKM dataset greatly affects the output. The IKM d
|
|
42 |
import torch
|
43 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
44 |
|
45 |
-
# Load model in
|
46 |
quantization_config = BitsAndBytesConfig(
|
47 |
-
|
48 |
llm_int8_skip_modules=["mamba"]
|
49 |
)
|
50 |
model = AutoModelForCausalLM.from_pretrained(
|
51 |
-
"
|
52 |
trust_remote_code=True,
|
53 |
torch_dtype=torch.bfloat16,
|
54 |
attn_implementation="flash_attention_2",
|
55 |
quantization_config=quantization_config
|
56 |
)
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
58 |
|
59 |
# Tokenize input
|
60 |
prompt = """How could we use cheese to reignite the sun? Answer:"""
|
|
|
42 |
import torch
|
43 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
44 |
|
45 |
+
# Load model in 4-bit precision
|
46 |
quantization_config = BitsAndBytesConfig(
|
47 |
+
load_in_4bit=True,
|
48 |
llm_int8_skip_modules=["mamba"]
|
49 |
)
|
50 |
model = AutoModelForCausalLM.from_pretrained(
|
51 |
+
"Severian/Jamba-Nexus-IKM-v1",
|
52 |
trust_remote_code=True,
|
53 |
torch_dtype=torch.bfloat16,
|
54 |
attn_implementation="flash_attention_2",
|
55 |
quantization_config=quantization_config
|
56 |
)
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained("Severian/Jamba-Nexus-IKM-v1")
|
58 |
|
59 |
# Tokenize input
|
60 |
prompt = """How could we use cheese to reignite the sun? Answer:"""
|