--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-finetuned-ner results: [] --- # bert-base-uncased-finetuned-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1340 - Precision: 0.9582 - Recall: 0.9500 - F1: 0.9541 - Accuracy: 0.9499 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1595 | 0.5 | 7000 | 0.1539 | 0.9469 | 0.9377 | 0.9423 | 0.9375 | | 0.1497 | 0.99 | 14000 | 0.1383 | 0.9549 | 0.9418 | 0.9483 | 0.9437 | | 0.1185 | 1.49 | 21000 | 0.1314 | 0.9557 | 0.9464 | 0.9510 | 0.9467 | | 0.1153 | 1.99 | 28000 | 0.1306 | 0.9553 | 0.9503 | 0.9528 | 0.9487 | | 0.0977 | 2.49 | 35000 | 0.1340 | 0.9582 | 0.9500 | 0.9541 | 0.9499 | | 0.0948 | 2.98 | 42000 | 0.1325 | 0.9584 | 0.9512 | 0.9548 | 0.9506 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2