--- base_model: HooshvareLab/bert-base-parsbert-uncased tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: output results: [] --- # Persian Text Emotion Detection This model is a fine-tuned version of [HooshvareLab/bert-base-parsbert-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased) on a custom dataset. It achieves the following results on the evaluation set: - Loss: 0.2551 - Precision: 0.9362 - Recall: 0.9360 - Fscore: 0.9359 - Accuracy: 0.9360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 348 | 0.3054 | 0.9166 | 0.9144 | 0.9136 | 0.9144 | | 0.5158 | 2.0 | 696 | 0.2551 | 0.9362 | 0.9360 | 0.9359 | 0.9360 | | 0.1469 | 3.0 | 1044 | 0.3670 | 0.9283 | 0.9259 | 0.9245 | 0.9259 | | 0.1469 | 4.0 | 1392 | 0.3833 | 0.9331 | 0.9317 | 0.9307 | 0.9317 | | 0.0453 | 5.0 | 1740 | 0.4241 | 0.9356 | 0.9345 | 0.9342 | 0.9345 | | 0.0237 | 6.0 | 2088 | 0.3750 | 0.9441 | 0.9439 | 0.9437 | 0.9439 | | 0.0237 | 7.0 | 2436 | 0.3986 | 0.9389 | 0.9388 | 0.9385 | 0.9388 | | 0.009 | 8.0 | 2784 | 0.4100 | 0.9407 | 0.9403 | 0.9397 | 0.9403 | | 0.0053 | 9.0 | 3132 | 0.4005 | 0.9403 | 0.9403 | 0.9401 | 0.9403 | | 0.0053 | 10.0 | 3480 | 0.3986 | 0.9410 | 0.9410 | 0.9408 | 0.9410 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3