File size: 1,560 Bytes
cb1dd4d
 
 
 
 
 
 
 
 
 
ee9ec9f
cb1dd4d
6982468
cb1dd4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
---
license: cc-by-nc-sa-4.0
language:
- cs
- en
pipeline_tag: sentence-similarity
---

## SimCSE

SimCSE-Dist-MPNet-CzEng is the [Seznam/Seznam/dist-mpnet-czeng-cs-en](https://huggingface.co/Seznam/dist-mpnet-czeng-cs-en) model fine-tuned with the [SimCSE](https://arxiv.org/abs/2104.08821) objective.

This model was created at Seznam.cz as part of a project to create high-quality small Czech semantic embedding models. These models perform well across various natural language processing tasks, including similarity search, retrieval, clustering, and classification. For further details or evaluation results, please visit the associated [paper](https://ojs.aaai.org/index.php/AAAI/article/download/30307/32315) or [GitHub repository](https://github.com/seznam/czech-semantic-embedding-models).

## How to Use

You can load and use the model like this:

```python
import torch
from transformers import AutoModel, AutoTokenizer

model_name = "Seznam/retromae-small-cs"  # Hugging Face link
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)

input_texts = [
    "Dnes je výborné počasí na procházku po parku.",
    "Večer si oblíbím dobrý film a uvařím si čaj."
]

# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')

outputs = model(**batch_dict)
embeddings = outputs.last_hidden_state[:, 0]  # Extract CLS token embeddings

similarity = torch.nn.functional.cosine_similarity(embeddings[0], embeddings[1], dim=0)
```