--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: a boy in Halloween costumes, Linear red light parameters: negative_prompt: (lowres, low quality, worst quality) output: url: images/6e4fc324ef43cc11435f1e0419cbd5b13e38c9f8f9289578ffa75282.jpg - text: a cat, Linear red light parameters: negative_prompt: (lowres, low quality, worst quality) output: url: images/2a3e77a3bf8abf4e15a9d02f05afc6064b9874ace8d58eb8928d3fd9.jpg - text: Halloween Lanterns on the table, Linear red light parameters: negative_prompt: (lowres, low quality, worst quality) output: url: images/201dd797dcadcb680d2ea4004910a6430efaf7620268a57584fb77d1.jpg - text: Eiffel Tower, Linear red light parameters: negative_prompt: (lowres, low quality, worst quality) output: url: images/fed3ec00baa80515fa20e37d373b82bcbebdb11e2270217f24b25ea1.jpg - text: a Witch, Linear red light parameters: negative_prompt: (lowres, low quality, worst quality) output: url: images/c717a319c28471f0973c3d5d2e4c881e79d1bd9260691a07fee4eda8.jpg - text: a vampire, moon, Linear red light parameters: negative_prompt: (lowres, low quality, worst quality) output: url: images/7b9a2e73e1dae5f3224dd4224e4aa984f29a60133ba80a238dfe3966.jpg base_model: stabilityai/stable-diffusion-3.5-large instance_prompt: Linear red light license: other license_name: stabilityai-ai-community license_link: >- https://huggingface.co/stabilityai/stable-diffusion-3-medium/blob/main/LICENSE.md --- # SD3.5-LoRA-Linear-Red-Light ## Trigger words You should use `Linear red light` to trigger the image generation. ## Inference ```python import torch from diffusers import StableDiffusion3Pipeline # pip install diffusers>=0.31.0 pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=torch.bfloat16) pipe.load_lora_weights("Shakker-Labs/SD3.5-LoRA-Linear-Red-Light", weight_name="SD35-lora-Linear-Red-Light.safetensors") pipe.fuse_lora(lora_scale=1.0) pipe.to("cuda") prompt = "a spider-man, Linear red light" negative_prompt = "(lowres, low quality, worst quality)" image = pipe(prompt=prompt, negative_prompt=negative_prompt num_inference_steps=24, guidance_scale=4.0, width=960, height=1280, ).images[0] image.save(f"toy_example.jpg") ```