--- language: - bn license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_15_0 metrics: - wer model-index: - name: Whisper Small finetuned on Bengali results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 15 type: mozilla-foundation/common_voice_15_0 config: bn split: validation args: bn metrics: - name: Wer type: wer value: 33.68672144182348 --- # Whisper Small finetuned on Bengali This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 15 dataset. It achieves the following results on the evaluation set: - Loss: 0.2886 - Wer Ortho: 66.3996 - Wer: 33.6867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.5075 | 0.8 | 100 | 0.4573 | 77.5920 | 45.3485 | | 0.257 | 1.6 | 200 | 0.2886 | 66.3996 | 33.6867 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.15.0 - Tokenizers 0.15.0