--- base_model: Shehryar718/URDU-ASR tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: URDU-ASR-25-EPOCH results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: ur split: test args: ur metrics: - name: Wer type: wer value: 0.4924368447522148 --- # URDU-ASR-25-EPOCH This model is a fine-tuned version of [Shehryar718/URDU-ASR](https://huggingface.co/Shehryar718/URDU-ASR) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7833 - Wer: 0.4924 - Cer: 0.2059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 3.5981 | 1.0 | 341 | 0.7487 | 0.5453 | 0.2200 | | 0.2559 | 2.0 | 683 | 0.7159 | 0.5086 | 0.2077 | | 0.3018 | 3.0 | 1024 | 0.7059 | 0.5457 | 0.2325 | | 0.2848 | 4.0 | 1366 | 0.6575 | 0.5464 | 0.2350 | | 0.2599 | 5.0 | 1707 | 0.6924 | 0.5436 | 0.2346 | | 0.2479 | 6.0 | 2049 | 0.6785 | 0.5372 | 0.2254 | | 0.2363 | 7.0 | 2390 | 0.7261 | 0.5356 | 0.2284 | | 0.2225 | 8.0 | 2732 | 0.7228 | 0.5199 | 0.2268 | | 0.2038 | 9.0 | 3073 | 0.7688 | 0.5248 | 0.2218 | | 0.1944 | 10.0 | 3415 | 0.7385 | 0.5384 | 0.2298 | | 0.1908 | 11.0 | 3756 | 0.7569 | 0.5325 | 0.2283 | | 0.1899 | 12.0 | 4098 | 0.7458 | 0.5088 | 0.2106 | | 0.1728 | 13.0 | 4439 | 0.7386 | 0.5326 | 0.2236 | | 0.1762 | 14.0 | 4781 | 0.7521 | 0.5297 | 0.2265 | | 0.1762 | 15.0 | 5122 | 0.7338 | 0.5197 | 0.2184 | | 0.1666 | 16.0 | 5464 | 0.7795 | 0.5294 | 0.2149 | | 0.1605 | 17.0 | 5805 | 0.7622 | 0.5092 | 0.2211 | | 0.1539 | 18.0 | 6147 | 0.7756 | 0.5144 | 0.2132 | | 0.1472 | 19.0 | 6488 | 0.7522 | 0.4989 | 0.2094 | | 0.1399 | 20.0 | 6830 | 0.7691 | 0.5144 | 0.2171 | | 0.1341 | 21.0 | 7171 | 0.7673 | 0.4992 | 0.2079 | | 0.1278 | 22.0 | 7513 | 0.7807 | 0.4889 | 0.2005 | | 0.1235 | 23.0 | 7854 | 0.7924 | 0.4932 | 0.2060 | | 0.1189 | 24.0 | 8196 | 0.7876 | 0.4954 | 0.2060 | | 0.1167 | 24.96 | 8525 | 0.7833 | 0.4924 | 0.2059 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.4 - Tokenizers 0.14.1