File size: 2,266 Bytes
f91cb75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: apache-2.0
base_model: Talha/URDU-ASR
tags:
- generated_from_trainer
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: URDU-ASR
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_13_0
type: common_voice_13_0
config: ur
split: test
args: ur
metrics:
- name: Wer
type: wer
value: 1.0023598591821734
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# URDU-ASR
This model is a fine-tuned version of [Talha/URDU-ASR](https://huggingface.co/Talha/URDU-ASR) on the common_voice_13_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1901
- Wer: 1.0024
- Cer: 0.9455
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.85,0.99) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 19.3758 | 0.59 | 25 | 8.7836 | 1.0 | 0.9999 |
| 6.0744 | 1.17 | 50 | 4.7540 | 1.0 | 0.9999 |
| 4.446 | 1.76 | 75 | 4.0785 | 1.0 | 0.9999 |
| 3.7656 | 2.34 | 100 | 3.5164 | 1.0024 | 0.9457 |
| 3.4626 | 2.93 | 125 | 3.3191 | 1.0024 | 0.9454 |
| 3.2974 | 3.51 | 150 | 3.2566 | 1.0024 | 0.9449 |
| 3.2203 | 4.1 | 175 | 3.2009 | 1.0024 | 0.9456 |
| 3.1955 | 4.69 | 200 | 3.1901 | 1.0024 | 0.9455 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|