Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# PanJu offset detect by image
|
2 |
+
Use fintune from google/vit-base-patch16-224(https://huggingface.co/google/vit-base-patch16-224)
|
3 |
+
|
4 |
+
## Dataset
|
5 |
+
```python
|
6 |
+
DatasetDict({
|
7 |
+
train: Dataset({
|
8 |
+
features: ['image', 'label'],
|
9 |
+
num_rows: 329
|
10 |
+
})
|
11 |
+
validation: Dataset({
|
12 |
+
features: ['image', 'label'],
|
13 |
+
num_rows: 56
|
14 |
+
})
|
15 |
+
})
|
16 |
+
|
17 |
+
```
|
18 |
+
36 Break and 293 Normal in train
|
19 |
+
5 Break and 51 Normal in validation
|
20 |
+
|
21 |
+
|
22 |
+
## Intended uses
|
23 |
+
|
24 |
+
### How to use
|
25 |
+
|
26 |
+
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
|
27 |
+
|
28 |
+
```python
|
29 |
+
# Load image
|
30 |
+
import torch
|
31 |
+
from transformers import ViTFeatureExtractor, ViTForImageClassification,AutoModel
|
32 |
+
from PIL import Image
|
33 |
+
import requests
|
34 |
+
url='https://datasets-server.huggingface.co/assets/ShihTing/IsCausewayOffset/--/ShihTing--IsCausewayOffset/validation/0/image/image.jpg'
|
35 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
36 |
+
# Load model
|
37 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
38 |
+
device = torch.device('cpu')
|
39 |
+
extractor = AutoFeatureExtractor.from_pretrained('ShihTing/PanJuOffset_TwoClass')
|
40 |
+
model = AutoModelForImageClassification.from_pretrained('ShihTing/PanJuOffset_TwoClass')
|
41 |
+
# Predict
|
42 |
+
inputs = extractor(images=image, return_tensors="pt")
|
43 |
+
outputs = model(**inputs)
|
44 |
+
logits = outputs.logits
|
45 |
+
Prob = outputs.logits.softmax(dim=-1).tolist()
|
46 |
+
print(Prob)
|
47 |
+
# model predicts one of the 1000 ImageNet classes
|
48 |
+
predicted_class_idx = logits.argmax(-1).item()
|
49 |
+
print("Predicted class:", model.config.id2label[predicted_class_idx])
|
50 |
+
```
|
51 |
+
|