--- license: apache-2.0 tags: - vision - image-classification widget: - src: https://datasets-server.huggingface.co/assets/ShihTing/IsCausewayOffset/--/ShihTing--IsCausewayOffset/validation/0/image/image.jpg example_title: Ex1 --- # PanJu offset detect by image Use fintune from google/vit-base-patch16-224(https://huggingface.co/google/vit-base-patch16-224) ## Dataset ```python DatasetDict({ train: Dataset({ features: ['image', 'label'], num_rows: 329 }) validation: Dataset({ features: ['image', 'label'], num_rows: 56 }) }) ``` 36 Break and 293 Normal in train 5 Break and 51 Normal in validation ## Intended uses ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python # Load image import torch from transformers import ViTFeatureExtractor, ViTForImageClassification,AutoModel from PIL import Image import requests url='https://datasets-server.huggingface.co/assets/ShihTing/IsCausewayOffset/--/ShihTing--IsCausewayOffset/validation/0/image/image.jpg' image = Image.open(requests.get(url, stream=True).raw) # Load model from transformers import AutoFeatureExtractor, AutoModelForImageClassification device = torch.device('cpu') extractor = AutoFeatureExtractor.from_pretrained('ShihTing/PanJuOffset_TwoClass') model = AutoModelForImageClassification.from_pretrained('ShihTing/PanJuOffset_TwoClass') # Predict inputs = extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits Prob = outputs.logits.softmax(dim=-1).tolist() print(Prob) # model predicts one of the 1000 ImageNet classes predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) ```