File size: 2,047 Bytes
ce34a8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: yihongLiu/furina
tags:
- generated_from_trainer
model-index:
- name: furina_afr_corr_0.0001
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# furina_afr_corr_0.0001

This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0466
- Spearman Corr: nan

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Spearman Corr |
|:-------------:|:-----:|:----:|:---------------:|:-------------:|
| No log        | 0.85  | 200  | 0.0472          | -0.0706       |
| No log        | 1.69  | 400  | 0.0466          | 0.0314        |
| 0.0639        | 2.54  | 600  | 0.0487          | -0.0414       |
| 0.0639        | 3.38  | 800  | 0.0468          | -0.0245       |
| 0.05          | 4.23  | 1000 | 0.0469          | nan           |
| 0.05          | 5.07  | 1200 | 0.0477          | -0.0167       |
| 0.05          | 5.92  | 1400 | 0.0471          | -0.0376       |
| 0.0497        | 6.77  | 1600 | 0.0469          | 0.0005        |
| 0.0497        | 7.61  | 1800 | 0.0463          | nan           |
| 0.0495        | 8.46  | 2000 | 0.0466          | nan           |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2