File size: 2,414 Bytes
bb9a626 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
base_model: yihongLiu/furina
tags:
- generated_from_trainer
model-index:
- name: furina_seed42_eng_kin_amh_basic_2e-05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# furina_seed42_eng_kin_amh_basic_2e-05
This model is a fine-tuned version of [yihongLiu/furina](https://huggingface.co/yihongLiu/furina) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0207
- Spearman Corr: 0.7614
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Spearman Corr |
|:-------------:|:-----:|:----:|:---------------:|:-------------:|
| No log | 1.75 | 200 | 0.0250 | 0.6539 |
| 0.0825 | 3.51 | 400 | 0.0215 | 0.7101 |
| 0.0225 | 5.26 | 600 | 0.0232 | 0.7326 |
| 0.0158 | 7.02 | 800 | 0.0218 | 0.7517 |
| 0.0126 | 8.77 | 1000 | 0.0218 | 0.7565 |
| 0.0104 | 10.53 | 1200 | 0.0205 | 0.7582 |
| 0.0088 | 12.28 | 1400 | 0.0200 | 0.7707 |
| 0.0074 | 14.04 | 1600 | 0.0213 | 0.7565 |
| 0.0074 | 15.79 | 1800 | 0.0202 | 0.7601 |
| 0.0065 | 17.54 | 2000 | 0.0221 | 0.7605 |
| 0.0059 | 19.3 | 2200 | 0.0221 | 0.7588 |
| 0.0055 | 21.05 | 2400 | 0.0214 | 0.7561 |
| 0.005 | 22.81 | 2600 | 0.0219 | 0.7574 |
| 0.0047 | 24.56 | 2800 | 0.0208 | 0.7606 |
| 0.0045 | 26.32 | 3000 | 0.0207 | 0.7614 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
|